Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor. 1994

P Ames, and J S Parkinson
Biology Department, University of Utah, Salt Lake City 84112.

Tsr, the serine chemoreceptor of Escherichia coli, has two signaling modes. One augments clockwise (CW) flagellar rotation, and the other augments counterclockwise (CCW) rotation. To identify the portion of the Tsr molecule responsible for these activities, we isolated soluble fragments of the Tsr cytoplasmic domain that could alter the flagellar rotation patterns of unstimulated wild-type cells. Residues 290 to 470 from wild-type Tsr generated a CW signal, whereas the same fragment with a single amino acid replacement (alanine 413 to valine) produced a CCW signal. The soluble components of the chemotaxis phosphorelay system needed for expression of these Tsr fragment signals were identified by epistasis analysis. Like full-length receptors, the fragments appeared to generate signals through interactions with the CheA autokinase and the CheW coupling factor. CheA was required for both signaling activities, whereas CheW was needed only for CW signaling. Purified Tsr fragments were also examined for effects on CheA autophosphorylation activity in vitro. Consistent with the in vivo findings, the CW fragment stimulated CheA, whereas the CCW fragment inhibited CheA. CheW was required for stimulation but not for inhibition. These findings demonstrate that a 180-residue segment of the Tsr cytoplasmic domain can produce two active signals. The CCW signal involves a direct contact between the receptor and the CheA kinase, whereas the CW signal requires participation of CheW as well. The correlation between the in vitro effects of Tsr signaling fragments on CheA activity and their in vivo behavioral effects lends convincing support to the phosphorelay model of chemotactic signaling.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D004843 Epistasis, Genetic A form of gene interaction whereby the expression of one gene interferes with or masks the expression of a different gene or genes. Genes whose expression interferes with or masks the effects of other genes are said to be epistatic to the effected genes. Genes whose expression is affected (blocked or masked) are hypostatic to the interfering genes. Deviation, Epistatic,Epistatic Deviation,Genes, Epistatic,Genes, Hypostatic,Epistases, Genetic,Gene-Gene Interaction, Epistatic,Gene-Gene Interactions, Epistatic,Genetic Epistases,Genetic Epistasis,Interaction Deviation,Non-Allelic Gene Interactions,Epistatic Gene,Epistatic Gene-Gene Interaction,Epistatic Gene-Gene Interactions,Epistatic Genes,Gene Gene Interaction, Epistatic,Gene Gene Interactions, Epistatic,Gene Interaction, Non-Allelic,Gene Interactions, Non-Allelic,Gene, Epistatic,Gene, Hypostatic,Hypostatic Gene,Hypostatic Genes,Interaction, Epistatic Gene-Gene,Interaction, Non-Allelic Gene,Interactions, Epistatic Gene-Gene,Interactions, Non-Allelic Gene,Non Allelic Gene Interactions,Non-Allelic Gene Interaction
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

P Ames, and J S Parkinson
January 1983, Nature,
P Ames, and J S Parkinson
October 1988, Journal of bacteriology,
P Ames, and J S Parkinson
January 2008, Molecular systems biology,
P Ames, and J S Parkinson
September 1997, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!