Regulation of rat liver phenylalanine hydroxylase. II. Substrate binding and the role of activation in the control of enzymatic activity. 1994

R Shiman, and T Xia, and M A Hill, and D W Gray
Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033.

Activation by phenylalanine and reduction by the co-factor (6R)-tetrahydrobiopterin (BH4) are required for formation of active liver phenylalanine hydroxylase. This work describes effects of the activation and redox state on substrate and effector recognition of this enzyme, it establishes relationships among the pterin and phenylalanine binding sites on the different forms of the enzyme, and it provides a quantitative description of the enzyme's presumptive regulatory and catalytic sites. BH4, 7,8-dihydrobiopterin (BH2), 6-methyltetrahydropterin, and 5-deaza-6-methyltetrahydropterin were found to bind to unactivated phenylalanine hydroxylase with a stoichiometry of 1/enzyme subunit and with hyperbolic kinetics; all appear to compete for the same binding site on the enzyme, and all appear to bind in the proximity of, but not to, the enzyme's non-heme iron. In the transition from unactivated to activated enzyme, phenylalanine and pterin binding is modified, a new site for phenylalanine is formed, and the pterin site is replaced by a site of greatly decreased affinity for BH4 and BH2, one which does not appear to recognize the dihydroxypropyl side chain of BH4 and BH2. The pterin- and phenylalanine-binding sites on activated phenylalanine hydroxylase appear to be part of the enzyme's active site. Despite large effects on substrate binding, neither chelator binding ability nor solvent accessibility of the iron are affected by activation; activation appears to affect the nearby environment of the enzyme's iron but not the iron itself. Studies of oxidized and reduced phenylalanine hydroxylase indicate that the redox state is not a major determinant of pterin and phenylalanine association with enzyme.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010618 Phenanthrolines Phenanthroline
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010651 Phenylalanine Hydroxylase An enzyme of the oxidoreductase class that catalyzes the formation of L-TYROSINE, dihydrobiopterin, and water from L-PHENYLALANINE, tetrahydrobiopterin, and oxygen. Deficiency of this enzyme may cause PHENYLKETONURIAS and PHENYLKETONURIA, MATERNAL. EC 1.14.16.1. Phenylalanine 4-Hydroxylase,Phenylalanine 4-Monooxygenase,4-Hydroxylase, Phenylalanine,4-Monooxygenase, Phenylalanine,Hydroxylase, Phenylalanine,Phenylalanine 4 Hydroxylase,Phenylalanine 4 Monooxygenase
D011622 Pterins Compounds based on 2-amino-4-hydroxypteridine. Pterin
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

R Shiman, and T Xia, and M A Hill, and D W Gray
June 1972, Indian journal of biochemistry & biophysics,
R Shiman, and T Xia, and M A Hill, and D W Gray
October 1982, The Journal of biological chemistry,
R Shiman, and T Xia, and M A Hill, and D W Gray
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
R Shiman, and T Xia, and M A Hill, and D W Gray
March 1982, The Journal of biological chemistry,
R Shiman, and T Xia, and M A Hill, and D W Gray
May 1988, Biochemistry,
R Shiman, and T Xia, and M A Hill, and D W Gray
July 1981, The Journal of biological chemistry,
R Shiman, and T Xia, and M A Hill, and D W Gray
September 1976, The Journal of biological chemistry,
R Shiman, and T Xia, and M A Hill, and D W Gray
September 1983, Biochemical and biophysical research communications,
R Shiman, and T Xia, and M A Hill, and D W Gray
January 1982, The Journal of biological chemistry,
Copied contents to your clipboard!