Direct square-wave voltammetry of superoxidized [4Fe-4S]3+ aconitase and associated 3Fe/4Fe cluster interconversions. 1994

J Tong, and B A Feinberg
Department of Chemistry, University of Wisconsin, Milwaukee 53201.

We report a direct square-wave voltammetric study of the iron-sulfur enzyme, aconitase, at the pyrolytic graphite edge electrode. New and established redox driven reactions were observed and the equilibrium reduction potential for each couple was determined: E0'[3Fe-4S]1+/0 = -268 mV, E0'[4Fe-4S]2+/1+ = -450 mV, E0'[4Fe-4S]3+/2+ = +100 mV, E0'Linear Form = -281 mV, and putatively, E0'[3Fe-4S]0/2- congruent to -1000 mV, all versus normal hydrogen electrode. Most importantly we have directly observed the superoxidized [4Fe-4S]3+ form of aconitase (originally proposed by Emptage, M. H., Dreyer, J.-L., Kennedy, M. C., and Beinert, H. (1983) J. Biol. Chem. 258, 11106-11111) and directly followed its conversion to the [3Fe-4S]1+ form; this intermediate is required for the deactivation of aconitase. Without exogenous ferrous iron, [3Fe-4S]0 aconitase is apparently super-reduced at very negative potentials to the [3Fe-4S]2- form and the concomitant formation of [4Fe-4S]2+ aconitase was followed over time. It is the apparent decomposition of super-reduced [3Fe-4S]2- aconitase that provides the source of ferrous iron for the interconversion of [3Fe-4S]0 aconitase to the [4Fe-4S]2+ form. Voltammetry of free and substrate bound [4Fe-4S]2+ aconitase showed that the latter is less susceptible to oxidation but, surprisingly, has the same E0'[4Fe-4S]3+/2+.

UI MeSH Term Description Entries
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000154 Aconitate Hydratase An enzyme that catalyzes the reversible hydration of cis-aconitate to yield citrate or isocitrate. It is one of the citric acid cycle enzymes. EC 4.2.1.3. Aconitase,Citrate Hydro-Lyase,Isocitrate Hydro-Lyase,Citrate Hydrolyase,Citrate Hydro Lyase,Hydratase, Aconitate,Hydro-Lyase, Citrate,Hydro-Lyase, Isocitrate,Hydrolyase, Citrate,Isocitrate Hydro Lyase
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

J Tong, and B A Feinberg
December 1989, The Journal of biological chemistry,
J Tong, and B A Feinberg
September 1998, Proceedings of the National Academy of Sciences of the United States of America,
J Tong, and B A Feinberg
December 1984, The Journal of biological chemistry,
J Tong, and B A Feinberg
May 1989, Proceedings of the National Academy of Sciences of the United States of America,
J Tong, and B A Feinberg
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!