The murine urokinase-type plasminogen activator receptor gene. 1994

T T Suh, and C Nerlov, and K Danø, and J L Degen
Division of Basic Science Research, Children's Hospital Research Foundation, Cincinnati, Ohio 45229.

The murine urokinase-type plasminogen activator receptor (uPAR) gene has been isolated and its complete nucleotide sequence established. The gene is organized into seven exons comprising 9.5% of the 13,207-base pair region that spans the interval between the transcription initiation and polyadenylation sites. The region upstream of the transcription initiation site lacks TATA- or CCAAT-like elements but is flanked by a G+C-rich region, which contains a number of potential regulatory elements including Sp1 and AP1 binding motifs. The close association of both Sp1 and AP1 sites within the proximal promoter region is consistent with the observation that the murine uPAR gene is inducible by phorbol esters. The major functional domains of the encoded protein, including the signal peptide, three cysteine-rich internal repeats, and the glycolipid anchor attachment motif, are encoded by separate exons. Based on the organization of the murine uPAR gene and the distribution of protein domains within the exons in the Ly-6 family of genes, it appears that the uPAR gene evolved secondarily to two internal duplication events within a Ly-6-like ancestral gene. The cloned and sequenced murine uPAR gene will be a valuable tool in understanding the regulation and biological roles of uPAR in that it will permit detailed studies of gene expression and uPAR-dependent processes in vitro, as well as the generation of both gain-of-function and loss-of-function mutants in transgenic mice.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014568 Urokinase-Type Plasminogen Activator A proteolytic enzyme that converts PLASMINOGEN to FIBRINOLYSIN where the preferential cleavage is between ARGININE and VALINE. It was isolated originally from human URINE, but is found in most tissues of most VERTEBRATES. Plasminogen Activator, Urokinase-Type,U-Plasminogen Activator,Urinary Plasminogen Activator,Urokinase,Abbokinase,Kidney Plasminogen Activator,Renokinase,Single-Chain Urokinase-Type Plasminogen Activator,U-PA,Single Chain Urokinase Type Plasminogen Activator,U Plasminogen Activator,Urokinase Type Plasminogen Activator
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T T Suh, and C Nerlov, and K Danø, and J L Degen
December 1987, Biochemistry,
T T Suh, and C Nerlov, and K Danø, and J L Degen
August 1994, Blood,
T T Suh, and C Nerlov, and K Danø, and J L Degen
November 1996, European journal of biochemistry,
T T Suh, and C Nerlov, and K Danø, and J L Degen
January 1990, The Journal of biological chemistry,
T T Suh, and C Nerlov, and K Danø, and J L Degen
May 1999, Thrombosis and haemostasis,
T T Suh, and C Nerlov, and K Danø, and J L Degen
January 2007, The international journal of biochemistry & cell biology,
T T Suh, and C Nerlov, and K Danø, and J L Degen
July 1992, Human genetics,
T T Suh, and C Nerlov, and K Danø, and J L Degen
May 1995, International journal of cancer,
Copied contents to your clipboard!