Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). 1994

R J Heath, and S Jackowski, and C O Rock
Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

The accumulation of the alarmone guanosine-3',5'-bispyrophosphate (ppGpp) in response to amino acid starvation or energy source depletion mediates the coordinate inhibition of macromolecular and membrane phospholipid biosynthesis in Escherichia coli. Accumulation of ppGpp triggered by the induced expression of either the relA gene or an unregulated, truncated relA gene that encodes a constitutively active ppGpp synthetase I, inhibited both de novo fatty acid and phospholipid biosynthesis and the incorporation of exogenous fatty acids into phospholipid. ppGpp inhibition of fatty acid and phospholipid synthesis was associated with an accumulation of long-chain acyl-ACP, the end products of fatty acid biosynthesis, and substrates for the sn-glycerol-3-phosphate acyltransferase (the plsB gene product). Overexpression of the plsB gene product relieved the inhibition of fatty acid and phospholipid synthesis, prevented the accumulation of long-chain acyl-ACPs, and allowed an increase in cell size following elevation of intracellular ppGpp. However, stable RNA accumulation and cell division were still blocked by ppGpp accumulation. These data show that the sn-glycerol-3-phosphate acyltransferase mediates the ppGpp-dependent regulation of fatty acid and phospholipid biosynthesis in E. coli.

UI MeSH Term Description Entries
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005992 Glycerol-3-Phosphate O-Acyltransferase An enzyme that transfers acyl groups from acyl-CoA to glycerol-3-phosphate to form monoglyceride phosphates. It acts only with CoA derivatives of fatty acids of chain length above C-10. Also forms diglyceride phosphates. EC 2.3.1.15. Glycerolphosphate Acyltransferase,Stearyl-CoA Glycerophosphate Transstearylase,Acyl-CoA Sn-Glycerol-3-Phosphate-O-Acyltransferase,Glycerophosphate Acyltransferase,Acyl CoA Sn Glycerol 3 Phosphate O Acyltransferase,Acyltransferase, Glycerolphosphate,Acyltransferase, Glycerophosphate,Glycerol 3 Phosphate O Acyltransferase,Glycerophosphate Transstearylase, Stearyl-CoA,O-Acyltransferase, Glycerol-3-Phosphate,Sn-Glycerol-3-Phosphate-O-Acyltransferase, Acyl-CoA,Stearyl CoA Glycerophosphate Transstearylase,Transstearylase, Stearyl-CoA Glycerophosphate
D006159 Guanosine Tetraphosphate Guanosine 5'-diphosphate 2'(3')-diphosphate. A guanine nucleotide containing four phosphate groups. Two phosphate groups are esterified to the sugar moiety in the 5' position and the other two in the 2' or 3' position. This nucleotide serves as a messenger to turn off the synthesis of ribosomal RNA when amino acids are not available for protein synthesis. Synonym: magic spot I. Alarmone ppGpp,Bacterial Magic Spot ppGpp,Guanosine 5'-(trihydrogen diphosphate), mono(trihydrogen diphosphate) (ester),Guanosine 5'-diphosphate 2'(3')-diphosphate,ppGpp,Guanosine 3'-Diphosphate 5'-Diphosphate,Guanosine 5'-Diphosphate 3'-Diphosphate,3'-Diphosphate 5'-Diphosphate, Guanosine,5'-Diphosphate 3'-Diphosphate, Guanosine,Guanosine 3' Diphosphate 5' Diphosphate,Guanosine 5' Diphosphate 3' Diphosphate,Tetraphosphate, Guanosine,ppGpp, Alarmone
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000213 Acyl Carrier Protein Consists of a polypeptide chain and 4'-phosphopantetheine linked to a serine residue by a phosphodiester bond. Acyl groups are bound as thiol esters to the pantothenyl group. Acyl carrier protein is involved in every step of fatty acid synthesis by the cytoplasmic system. Myristoyl-ACP,Carrier Protein, Acyl,Myristoyl ACP,Protein, Acyl Carrier
D019342 Acetic Acid Product of the oxidation of ethanol and of the destructive distillation of wood. It is used locally, occasionally internally, as a counterirritant and also as a reagent. (Stedman, 26th ed) Glacial Acetic Acid,Vinegar,Acetic Acid Glacial,Acetic Acid, Glacial,Glacial, Acetic Acid

Related Publications

R J Heath, and S Jackowski, and C O Rock
February 1987, Journal of bacteriology,
R J Heath, and S Jackowski, and C O Rock
October 1973, Journal of bacteriology,
R J Heath, and S Jackowski, and C O Rock
July 1989, The Journal of biological chemistry,
R J Heath, and S Jackowski, and C O Rock
January 1972, Journal of biochemistry,
R J Heath, and S Jackowski, and C O Rock
September 1997, Biochimica et biophysica acta,
R J Heath, and S Jackowski, and C O Rock
December 1984, The Journal of biological chemistry,
Copied contents to your clipboard!