Serum deprivation induces apoptotic cell death in a subset of Balb/c 3T3 fibroblasts. 1994

G V Kulkarni, and C A McCulloch
Faculty of Dentistry, University of Toronto, Ontario, Canada.

Little is known about the regulation of apoptosis in fibroblasts although several model systems including serum deprivation and treatment with staurosporine or topoisomerase inhibitors have been used to induce apoptosis in vitro. To validate a reproducible in vitro model for the study of apoptosis in fibroblasts, we cultured density-inhibited monolayer cultures of Balb/c 3T3 fibroblasts in Dulbecco's modified essential medium plus 15% fetal calf serum and then withdrew serum. Time-lapse video microscopy demonstrated that within minutes of serum withdrawal, cells lost substrate attachment and floated to the top of the liquid growth medium. There was a time-dependent increase in the number of non-adherent cells. Some of these cells regained attachment and spread momentarily, but they eventually rounded up and lost attachment permanently. In contrast to serum-containing cultures in which similar morphological changes were followed by mitosis, in serum-free cultures repeated attempts at mitosis were followed by permanent attachment loss and presumably cell death. To assess whether all the non-adherent cells were in fact dead, the percentages of cells that continued to proliferate upon return to serum-supplemented conditions was computed. After various periods of serum starvation a decreasing proportion (approx. 75% at 30 minutes; < 2% at 24 hours) of the non-adherent cells could be rescued by addition of serum. Transmission electron microscopy of cells 3 hours after serum withdrawal showed that the majority (approximately 60%) of non-adherent cells exhibited marked intranuclear chromatin condensation but maintained integrity of cell and nuclear membranes and cell organelles, morphological changes consistent with those of apoptotic cell death. Scanning electron microscopy of cultures 3 hours following serum withdrawal showed rounded cells with marked surface blebbing. Fluorescence and confocal microscopy revealed increased intensity of nuclear staining with DAPI while actin filaments became indistinct or collapsed around the nucleus. After cycloheximide treatment to inhibit protein synthesis, there was no reduction of apoptosis. Gel electrophoresis of DNA from both control and 3 hour-serum-deprived cells showed intact DNA with no oligonucleosomal length fragmentation. After serum withdrawal, intracellular calcium was reduced by about 32% over 5 minutes as measured by fura2 ratio fluorimetry in single cells. Serum-starved cells showed a time-dependent shrinkage in mean cell diameter compared to trypsinized, adherent control cells (at 0 hours, mean diameter = 18.0 microns--viable; at 4 hours, mean diameter = 15.5 microns--apoptotic). Flow cytometric analysis showed increased propidium iodide staining and reduced fluorescein diacetate uptake over 3 hours, changes that were contemporaneous with the reduction of cell diameter.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide

Related Publications

G V Kulkarni, and C A McCulloch
January 2020, Molekuliarnaia biologiia,
G V Kulkarni, and C A McCulloch
February 1972, Experimental cell research,
G V Kulkarni, and C A McCulloch
January 1990, Folia haematologica (Leipzig, Germany : 1928),
G V Kulkarni, and C A McCulloch
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
G V Kulkarni, and C A McCulloch
September 2023, Molecular biology reports,
G V Kulkarni, and C A McCulloch
December 1989, The Journal of biological chemistry,
G V Kulkarni, and C A McCulloch
December 1992, Biochimica et biophysica acta,
G V Kulkarni, and C A McCulloch
January 1982, Roczniki Akademii Medycznej im. Juliana Marchlewskiego w Bialymstoku,
Copied contents to your clipboard!