Morphogenetic response of cultured normal and transformed fibroblasts, and epitheliocytes, to a cylindrical substratum surface. Possible role for the actin filament bundle pattern. 1994

Rovensky YuA, and V I Samoilov
Cancer Research Centre, Russian Academy of Medical Sciences, Moscow.

Morphometric characteristics such as cell area, dispersion, elongation and orientation were studied in normal and transformed fibroblasts, and in epitheliocytes cultured on flat or cylindrical substrata. Cylindrical surfaces with a high degree of curvature (12-13 or 25 microns radii) were shown to affect cell size, shape and alignment. The reaction of the cells to the curvature of cylindrical substrata was different in various cell types studied and depended on the pattern of actin microfilament bundles. The cells containing pronounced straight actin bundles (mouse embryo fibroblasts at the polarization stage of spreading, single spread cells of the 'normal' epithelial FBT line or the fully transformed epithelial IAR 6-1 line) were relatively resistant to bending around a cylindrical substratum, and became elongated and oriented along the cylinder. Cells with circular actin bundles as the predominant pattern (mouse embryo fibroblasts at the radial stage of spreading, single spread cells of 'normal' epithelial IAR 20 line) and cells with insufficient or no actin bundles (transformed fibroblastic L line) were prone to bending around a cylinder with much less pronounced elongation and orientation along its axis. The data obtained indicate that the reaction of cultured cells to the geometry of the substratum surface and, in particular, to a cylindrical surface is determined not only by the presence or absence of actin microfilament bundles but by their pattern in the cell.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003584 Cytological Techniques Methods used to study CELLS. Cytologic Technics,Cytological Technic,Cytological Technics,Cytological Technique,Technic, Cytological,Technics, Cytological,Technique, Cytological,Techniques, Cytological,Cytologic Technic,Technic, Cytologic,Technics, Cytologic
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property

Related Publications

Rovensky YuA, and V I Samoilov
January 1983, Journal of cellular physiology,
Rovensky YuA, and V I Samoilov
October 1976, Biochimica et biophysica acta,
Rovensky YuA, and V I Samoilov
February 1977, Proceedings of the National Academy of Sciences of the United States of America,
Rovensky YuA, and V I Samoilov
January 1980, Progress in clinical and biological research,
Rovensky YuA, and V I Samoilov
January 1975, The Histochemical journal,
Rovensky YuA, and V I Samoilov
January 1976, Journal of supramolecular structure,
Rovensky YuA, and V I Samoilov
March 1975, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!