The time course of aneural regeneration in slow-twitch soleus muscles of young adult rats was studied and compared with the changes following denervation in soleus and fast extensor digitorum longus muscles. Regeneration was induced by auto-grafting after treatment with bupivacaine; isometric contractions were recorded from 5 to 70 days later. Force was detected at 5 days; at 12 days force was maximal (at least 20% of original) and thereafter fell exponentially. Force varied normally with total fibre area, except at 5 and 71 days when force generating capacity was low. Contraction and relaxation in the twitch were longer than normal (maximally at 5 days), and were closer to denervated soleus than EDL; in contrast, the maximal rate of rise of force was as high as that of denervated EDL and much higher than in denervated soleus. It is suggested that the muscle was fundamentally fast contracting, but the twitches were probably slow because of greater than normal activation following a single stimulus--a hypothesis supported by twitch:tetanus ratios that were higher than in denervated muscles. Tetanic force was much more sensitive than normal to changes of muscle length from optimum, despite the fact that the lengths of regenerated muscles were similar to those of contralateral muscles. The properties of denervated soleus gradually approached those of regenerated soleus, probably because of replacement of original fibres by regenerated ones.