Structure of reticulospinal axon growth cones and their cellular environment during regeneration in the lamprey spinal cord. 1994

D I Lurie, and D S Pijak, and M E Selzer
David Mahoney Institute of Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia 19104-4283.

The large larval sea lamprey is a primitive vertebrate that recovers coordinated swimming following complete spinal transection. An ultrastructural study was performed in order to determine whether morphologic features of regenerating axons and their cellular environment would provide clues to their successful regeneration compared to their mammalian counterparts. Three larval sea lampreys were studied at 3, 4 and 11 weeks following complete spinal transection and compared with an untransected control. Müller and Mauthner cells or their giant reticulospinal axons (GRAs) were impaled and injected with horseradish peroxidase (HRP). Alternating thick and thin sections were collected for light and electron microscopy. A total of 9 neurites were examined. At all times, growth cones of GRAs differed from those of cultured mammalian neurons in being packed with neurofilaments and in lacking long filopodia, suggesting possible differences in the mechanisms of axon outgrowth. Morphometric analysis suggested that GRA growth cones contact glial fibers disproportionately compared to the representation of glial surface membranes in the immediate environment of these growth cones. No differences were found between glial cells in regenerating spinal cords and those of untransected control animals with regard to the size of the cell body and nucleus and the packing density of their intermediate filaments. Glial fibers in control animals and glial fibers located far from a transection were oriented transversely. Glial cells adjacent to the transection site sent thickened, longitudinally oriented processes into the blood clot at the transection site. These longitudinal glial processes preceded the regenerating axons. Desmosomes were observed on glia adjacent to the lesion but were scarce in the lesion during the first four weeks post-transection. These findings suggest that longitudinally oriented glial fibers may serve as a bridge along which axons can regenerate across the lesion. The presence of desmosomes might prevent migration of astrocytes near the transection, thus stabilizing the glial bridge.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

D I Lurie, and D S Pijak, and M E Selzer
April 1991, Experimental neurology,
D I Lurie, and D S Pijak, and M E Selzer
January 1994, Brain research bulletin,
D I Lurie, and D S Pijak, and M E Selzer
January 2020, Frontiers in cellular neuroscience,
D I Lurie, and D S Pijak, and M E Selzer
June 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D I Lurie, and D S Pijak, and M E Selzer
March 1978, Journal of neurophysiology,
D I Lurie, and D S Pijak, and M E Selzer
May 1991, The Journal of comparative neurology,
D I Lurie, and D S Pijak, and M E Selzer
September 2022, Neural regeneration research,
D I Lurie, and D S Pijak, and M E Selzer
April 1991, The Journal of comparative neurology,
D I Lurie, and D S Pijak, and M E Selzer
December 1994, The Journal of comparative neurology,
Copied contents to your clipboard!