Quantal mechanism of long-term potentiation in hippocampal mossy-fiber synapses. 1994

Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
Department of Psychology, Yale University, New Haven, Connecticut 06520.

1. The quantal mechanism underlying the expression of long-term potentiation (LTP) was studied in the mossy-fiber (mf) synapses of the rat hippocampus. Whole-cell recordings were used to measure the excitatory postsynaptic currents (EPSCs) before and after LTP induction in brain slices maintained at 31 +/- 1 degrees C. 2. Evoked EPSCs were recorded from 473 CA3 pyramidal neurons. The mf synapses were stimulated using paired pulses (40-ms interpulse interval) repeated every 2-10 s. At least 400 pairs of mf responses were obtained before and during the expression of LTP, which was produced by high-frequency (100 Hz) mf stimulation. Sufficiently stationary data were obtained from five neurons that exhibited LTP and that also satisfied strict criteria and procedures that are necessary for eliciting and identifying unitary mf responses. 3. Three independent lines of evidence implicated a presynaptic component to the mechanism underlying mf LTP. The first was based on a graphical version of the classical method of variance. The graphical variance (GV) method was evaluated by clamping the cell at two different holding potentials during paired-pulse facilitation (PPF). The results indicated that the GV method can distinguish changes in mean quantal content m and mean quantal size q in rat mf synapses. The same analysis, when applied to PPF before and after LTP induction, indicated that both result from an increase in m. 4. The second line of evidence was based on the classical method of failures. Consistent with the inference that mf LTP is due to an increase in m, there was a statistically significant reduction in the number of quantal release failures.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011789 Quantum Theory The theory that the radiation and absorption of energy take place in definite quantities called quanta (E) which vary in size and are defined by the equation E Quantum Theories,Theories, Quantum,Theory, Quantum
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
July 1988, Neuroscience letters,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
April 1993, Hippocampus,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
June 1991, Neuroreport,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
January 2008, Neuron,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
September 1990, Journal of neurophysiology,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
January 1994, Advances in second messenger and phosphoprotein research,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
November 1989, Neuron,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
January 1990, Advances in experimental medicine and biology,
Z Xiang, and A C Greenwood, and E W Kairiss, and T H Brown
July 1994, Neuroscience research,
Copied contents to your clipboard!