Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships. 1994

B M Tune, and C Y Hsu

Cephaloridine (Cld), the most widely studied nephrotoxic cephalosporin, has significant structural homology with carnitine, which facilitates the transport of long-chain fatty acids into the mitochondrial inner matrix. Because of this homology, and evidence of a role of lipids in cephaloglycin (Cgl) nephrotoxicity, protocols were designed to compare the effects of Cld and Cgl on renal cortical mitochondrial carnitine transport, on long-chain fatty acylcarnitine-mediated respiration and on the in situ mitochondrial pools and urinary excretion of carnitine and acylcarnitines. The following was found: 1) both cephalosporins reduced carnitine-facilitated pyruvate oxidation (CFPO) and palmitoylcarnitine-mediated respiration (PCMR) by 40 to 50% in mitochondria exposed in vivo (300 mg/kg b.wt., 1 hr). CFPO could be decreased by reduction of carnitine uptake, pyruvate oxidation or carnitine acetyltransferase activity; 2) neither cephalosporin reduced mitochondrial carnitine acetyltransferase or carnitine palmitoyltransferase; 3) with in vitro exposure (2000 micrograms/ml, immediate effect) Cgl had no significant toxicity to mitochondrial CFPO. Cld inhibited CFPO in a dose-dependent manner, up to 100% at 2000 micrograms/ml; this effect was reduced by increasing carnitine concentrations; 4) in vitro Cld prevented the potentiation of PCMR by preloading with carnitine, reduced mitochondrial acetylcarnitine/carnitine exchange by 70% and reduced PCMR by 30%; 5) in vivo Cld increased mitochondrial-free carnitine in the in situ kidney by 100%; and 6) in vivo Cld increased the fractional renal excretion of carnitine from 0 +/- 0 to 0.29 +/- 0.03 and the fractional excretion of long-chain acylcarnitines from 0.06 +/- 0.01 to 0.79 +/- 0.17.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D002332 Carnitine O-Acetyltransferase An enzyme that catalyzes the formation of O-acetylcarnitine from acetyl-CoA plus carnitine. EC 2.3.1.7. Carnitine Acetyltransferase,Carnitine-Acetyl-CoA-Transferase,Acetyltransferase, Carnitine,Carnitine Acetyl CoA Transferase,Carnitine O Acetyltransferase,O-Acetyltransferase, Carnitine
D002334 Carnitine O-Palmitoyltransferase An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21. Carnitine Palmitoyltransferase,CPT II,Carnitine Acyltransferase I,Carnitine Palmitoyltransferase I,Carnitine Palmitoyltransferase II,Palmitoylcarnitine Transferase,Palmitylcarnitine Acyltransferase,Acyltransferase I, Carnitine,Acyltransferase, Palmitylcarnitine,Carnitine O Palmitoyltransferase,II, Carnitine Palmitoyltransferase,O-Palmitoyltransferase, Carnitine,Palmitoyltransferase I, Carnitine,Palmitoyltransferase II, Carnitine,Palmitoyltransferase, Carnitine,Transferase, Palmitoylcarnitine
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier

Related Publications

B M Tune, and C Y Hsu
May 1972, The Journal of pharmacology and experimental therapeutics,
B M Tune, and C Y Hsu
December 1962, The Journal of biological chemistry,
B M Tune, and C Y Hsu
July 1979, The Journal of pharmacology and experimental therapeutics,
B M Tune, and C Y Hsu
August 1995, Biochemical pharmacology,
B M Tune, and C Y Hsu
October 2016, Biochimica et biophysica acta,
B M Tune, and C Y Hsu
February 2001, The Annals of thoracic surgery,
B M Tune, and C Y Hsu
January 1987, Toxicology in vitro : an international journal published in association with BIBRA,
B M Tune, and C Y Hsu
June 2011, Biochemical and biophysical research communications,
Copied contents to your clipboard!