Activation of glutamate receptors in response to membrane depolarization of hair cells isolated from chick cochlea. 1994

Y Kataoka, and H Ohmori
Department of Physiology, Faculty of Medicine, Kyoto University, Japan.

1. Experiments were performed to identify the neurotransmitter released from hair cells of chick cochlea. An isolated hair cell was closely apposed to a cultured granule cell of the rat cerebellum, and both cells were whole-cell voltage clamped by utilizing a nystatin perforated patch technique. 2. Depolarization of hair cells to potentials more positive than -20 mV induced currents in the granule cell in a 10 mM Ca2+ extracellular medium. Amplitudes of induced currents were dependent on the membrane potential of granule cells and showed an outward-going rectification. The induced current in granule cells was reversibly suppressed by a local application of 2-amino-5-phosphonovalerate (APV), which indicates that the current was generated through the activation of an NMDA subtype of the glutamate receptor expressed on the granule cell. 3. The current amplitude of the granule cell was dependent on the size of hair cell depolarization. The size of current induced in a granule cell held at +55 mV was progressively increased with hair cell depolarization from -20 to +10 mV. At more positive potentials, the current amplitude was decreased. This voltage dependence was similar to but did not exactly match that of Ca2+ currents in the hair cell. The granule cell current appeared at more positive membrane potentials than the Ca2+ current in hair cells. 4. When intracellular Ca2+ concentration was increased by UV irradiation of the hair cell loaded with a caged Ca2+ compound, nitr-5, the closely apposed granule cell generated an outward current when voltage clamped at +55 mV. 5. These observations (paragraphs 2-4) imply that the most likely neurotransmitter released from the hair cell at its synapse with the afferent nerve terminal is glutamate.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte

Related Publications

Y Kataoka, and H Ohmori
July 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Kataoka, and H Ohmori
October 1990, The Journal of physiology,
Y Kataoka, and H Ohmori
October 1990, The Journal of physiology,
Y Kataoka, and H Ohmori
April 1987, The Journal of physiology,
Y Kataoka, and H Ohmori
August 1991, European journal of pharmacology,
Y Kataoka, and H Ohmori
April 2001, Zhonghua er bi yan hou ke za zhi,
Copied contents to your clipboard!