Muscarinic M-current inhibition via G alpha q/11 and alpha-adrenoceptor inhibition of Ca2+ current via G alpha o in rat sympathetic neurones. 1994

M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London.

1. Microinjection of selective antibodies into superior cervical ganglion (SCG) neurones has identified the G-protein alpha-subunits mediating muscarinic receptor inhibition of M-type K+ current (IK(M)) and alpha-adrenoceptor inhibition of Ca2+ current (ICa). 2. Antibodies specific for G alpha q/11, but not those for G alpha o, reduced M-current inhibition by the muscarinic agonist oxotremorine-M, whereas anti-G alpha o antibodies, but not anti-G alpha q/11 or anti-G alpha i1-3 antibodies, reduced calcium current inhibition by noradrenaline. 3. Immunoblots with specific anti-G-protein antibodies demonstrated the presence of both G alpha q and G alpha 11, while G alpha o1 (but virtually no G alpha o2) was present. 4. We conclude that M1 muscarinic receptor inhibition of IK(M) is transduced by G alpha q and/or G alpha 11, and that G alpha o transduces alpha-adrenoceptor inhibition of ICa.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
January 1991, Proceedings of the National Academy of Sciences of the United States of America,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
October 1999, The Journal of physiology,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
January 1995, British journal of pharmacology,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
June 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
December 1997, Molecular pharmacology,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
July 1993, The Journal of physiology,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
August 1999, Neuroreport,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
November 1992, The Journal of physiology,
M P Caulfield, and S Jones, and Y Vallis, and N J Buckley, and G D Kim, and G Milligan, and D A Brown
July 1991, European journal of pharmacology,
Copied contents to your clipboard!