Omega-conotoxin-sensitive and -resistant transmitter release from the chick ciliary presynaptic terminal. 1994

H Yawo, and N Chuhma
Department of Physiology, Kyoto University Faculty of Medicine, Japan.

1. Synaptically evoked responses to stimulation of the oculomotor nerve were recorded from the ciliary nerve in chick embryos. The postsynaptic currents in response to presynaptic stimulation (EPSCs) were also recorded under whole-cell voltage clamp of the ciliary cell. 2. The ciliary nerve response was dependent on the extracellular Ca2+ concentration ([Ca2+]o). omega-Conotoxin GVIA (omega-CgTX, 100 nM) increased the [Ca2+]o necessary to evoke the half-maximal response by a factor of 1.7 without changing the slope of [Ca2+]o dependence. Dihydropyridine (DHP) derivatives, nifedipine or Bay K 8644, did not affect the [Ca2+]o sensitivity of ciliary nerve response. 3. The EPSC was usually preceded by the capacitive coupling response of the presynaptic action potential. In some records, the EPSCs were also preceded by the electrical coupling responses which were the mirror images of the presynaptic action potentials. The current-voltage relation of the EPSCs showed inward rectification. 4. The EPSC was potentiated by 4-aminopyridine (4-AP) as a result of prolongation of the falling phase of presynaptic action potential. In the presence of high [Ca2+]o and 4-AP, a small fraction of EPSC was resistant to omega-CgTX. 5. The resting potential of the presynaptic terminal was changed from -69 to -57 mV by increasing [K+]o from 1 to 10 mM. The same procedure decreased the omega-CgTX-resistant EPSC by 30%, whereas the omega-CgTX-untreated EPSC in low-Ca2+ saline was not affected by the change in [K+]o. 6. The nerve-evoked increase in intracellular Ca2+ was recorded from the presynaptic terminal (delta[Ca2+]pre). The delta[Ca2+]pre was larger in a solution containing 10 mM Ca2+ and 1 mM K+ after treating with omega-CgTX than in a solution containing 2 mM Ca2+ and 16 mM Mg2+ before treating with omega-CgTX. The EPSC was, in contrast, smaller in the 10 mM Ca(2+)-1 mM K+ solution after omega-CgTX treatment than in the 2 mM Ca(2+)-16 mM Mg2+ solution before omega-CgTX treatment. 7. Similarly, the EPSC was smaller in the 10 mM Ca(2+)-1 mM K+ solution containing 5 microM La3+ than in the 2 mM Ca(2+)-16 mM Mg2+ solution, whereas the delta [Ca2+]pre was larger in the 10 mM Ca(2+)-1 mM K+ solution containing 5 micrograms La3+ than in the 2 mM Ca(2+)-16 mM Mg2+ solution. 8. It is concluded that the omega-CgTX-sensitive Ca2+ conductance of the presynaptic terminal is the principal source of Ca2+ involved in transmitter release.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

H Yawo, and N Chuhma
April 1989, Clinical and experimental pharmacology & physiology,
H Yawo, and N Chuhma
November 1994, Journal of neuroscience research,
Copied contents to your clipboard!