Isolation and characterization of an Escherichia coli DnaK mutant with impaired ATPase activity. 1994

W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032.

A temperature-sensitive mutant of DnaK, the principal Escherichia coli member of the 70 kDa heat shock protein family, has been isolated. The mutation, dnaK25, lies in the putative ATP binding pocket of DnaK. It consists of a C to T transition that changes the highly conserved proline 143 to serine. Mutant strains do not support the propagation of bacteriophage lambda or of plasmids that require DnaA for replication. They are also defective in the utilization of mannose and sorbitol. ATPase activity of the mutant protein is reduced 20-fold relative to wild-type, while autophosphorylation is unaffected. DnaK25 has a fourfold faster rate of nucleotide exchange than wild-type DnaK; nucleotide exchange by both proteins is markedly increased by GrpE. The DnaK25 ATPase is still stimulated by DnaJ and GrpE and by peptide substrates. However, the affinity of most peptides tested for stimulating the DnaK25 ATPase is reduced significantly. These results indicate that a mutation in the N-terminal nucleotide binding domain can alter substrate interactions with the C-terminal substrate binding site. Nucleotide exchange by both wild-type DnaK and DnaK25 proceeds at a much faster rate than ATP hydrolysis, and therefore cannot be the rate limiting step of ATP hydrolysis under the conditions used in these experiments. Consistent with this, peptides, which stimulate ATP hydrolysis, have no effect on nucleotide exchange. Peptides thus appear to stimulate the ATPase by acting at another step, such as increasing the rate of phosphate bond cleavage.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
May 1979, Journal of bacteriology,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
July 1980, Biokhimiia (Moscow, Russia),
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
February 1984, Journal of bacteriology,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
January 1988, Methods in enzymology,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
February 2005, Journal of bioscience and bioengineering,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
January 1984, Archives of biochemistry and biophysics,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
April 1991, Proceedings of the National Academy of Sciences of the United States of America,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
May 1993, FEBS letters,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
April 1980, Canadian journal of biochemistry,
W F Burkholder, and C A Panagiotidis, and S J Silverstein, and A Cegielska, and M E Gottesman, and G A Gaitanaris
October 1975, Canadian journal of microbiology,
Copied contents to your clipboard!