The E2 transcriptional repressor can compensate for Sp1 activation of the human papillomavirus type 18 early promoter. 1994

C Demeret, and M Yaniv, and F Thierry
Unité des Virus Oncogènes, URA 1644 Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.

The E6/E7 early promoter (P105) of genital human papillomavirus type 18 contains binding sites for the viral regulator E2, tandemly repeated and closely flanked by two crucial promoter elements; the TATA box downstream and an Sp1 binding site upstream. We showed that binding of purified E2 and Sp1 proteins in vitro to their neighboring sites is mutually exclusive and that Sp1 is displaced by E2. However, this displacement did not result in repression of P105 transcription. In contrast, binding of E2 to its site overlapping the Sp1 binding site activated transcription of P105 derivatives lacking the E2 site most proximal to the TATA box. Surprisingly, a truncated form of E2, deleted of part of the transactivation domain and known as the E2 transcriptional repressor, as well as the E2 DNA-binding domain alone also supported transcription of these P105 derivatives. In the context of P105, the viral E2 protein can thus activate P105 transcription in place of Sp1, even in the absence of its transactivation domain.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D016329 Sp1 Transcription Factor Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES. Transcription Factor, Sp1,Specificity Protein 1 Transcription Factor
D016385 TATA Box A conserved A-T rich sequence which is contained in promoters for RNA polymerase II. The segment is seven base pairs long and the nucleotides most commonly found are TATAAAA. Hogness Box,Box, Hogness,Box, TATA

Related Publications

C Demeret, and M Yaniv, and F Thierry
June 1999, Science (New York, N.Y.),
C Demeret, and M Yaniv, and F Thierry
January 1997, Journal of virology,
C Demeret, and M Yaniv, and F Thierry
May 1987, Journal of virology,
C Demeret, and M Yaniv, and F Thierry
January 2007, Intervirology,
C Demeret, and M Yaniv, and F Thierry
December 1992, Nucleic acids research,
C Demeret, and M Yaniv, and F Thierry
February 1996, The Journal of general virology,
Copied contents to your clipboard!