Sequence requirements for stable binding and function of Rep68 on the adeno-associated virus type 2 inverted terminal repeats. 1994

J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
Molecular Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-1654.

Replication of the palindromic inverted terminal repeats (ITRs) of adeno-associated virus type 2 requires several functions of the viral nonstructural Rep proteins. These include binding to the ITR, nicking of the double-stranded replication intermediate at the terminal resolution site (trs), and then strand displacement and synthesis from the nick. This report demonstrates the ability of both recombinant fusion maltose-binding protein (MBP)-Rep68 delta produced in Escherichia coli and wild-type (wt) Rep68 to bind to a linear truncated form of the ITR, delta 57 ITR, with similar affinity as to the wt hairpin ITR. A dissociation constant for MBP-Rep68 delta of approximately 8 x 10(-10) M was determined for the wt ITR and delta 57 ITR probes. Truncation of delta 57 ITR to generate delta 28 ITR, which retains the GCTC repeat motif but not the trs, bound at least 10 times less efficiently than delta 57 ITR. Extension of delta 28 ITR with nonspecific sequence restored the ability of MBP-Rep68 delta to bind to delta 28 ITR. Thus, high-affinity binding would appear to require stabilization by flanking sequence as well as the intact GCTC repeat motif. Cleavage of the delta 57 ITR probe with DdeI, which truncates the flanking sequence and was previously shown to inhibit binding by Rep68, also inhibited the binding of MBP-Rep68 delta. The requirements for stable binding were further defined with a series of oligonucleotide probes which spanned the region protected by MBP-Rep78 in DNase I footprinting. The binding activity of either MBP-Rep68 delta or wt Rep68 to hairpin ITR or delta 57 ITR was indistinguishable. However, the binding activity of MBP-Rep68 delta to DNA does not appear to correlate with trs endonuclease activity. The nicking and covalent linkage of MBP-Rep68 delta to the nonhairpin delta 57 ITR was approximately 100-fold less efficient than its linkage to a hairpin-containing ITR. Therefore, although the hairpin portion of the ITR does not appear to play a role in recognition and stabilization of MBP-Rep68 delta binding, its presence does affect the trs cleavage activity of the protein.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000229 Dependovirus A genus of the family PARVOVIRIDAE, subfamily PARVOVIRINAE, which are dependent on a coinfection with helper adenoviruses or herpesviruses for their efficient replication. The type species is Adeno-associated virus 2. Adeno-Associated Viruses,Dependoparvovirus,Adeno-Associated Virus,Virus, Adeno-Associated,Viruses, Adeno-Associated,Adeno Associated Virus,Adeno Associated Viruses,Dependoparvoviruses,Dependoviruses,Virus, Adeno Associated,Viruses, Adeno Associated
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
March 1996, Journal of virology,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
February 2015, Gene therapy,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
April 1997, Journal of virology,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
May 2014, BioTechniques,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
December 2019, Human gene therapy methods,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
April 2001, Developmental dynamics : an official publication of the American Association of Anatomists,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
September 1997, Journal of virology,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
May 1980, Journal of virology,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
November 1995, Journal of virology,
J A Chiorini, and S M Wiener, and R A Owens, and S R Kyöstió, and R M Kotin, and B Safer
November 2015, Journal of virology,
Copied contents to your clipboard!