Molecular cloning and analysis of the human Tec protein-tyrosine kinase. 1994

K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

Mouse Tec is a non-receptor type protein-tyrosine kinase and is highly expressed in many hematopoietic cell lines. To investigate the roles of the Tec kinase in the human hematopoietic system, we isolated cDNAs encoding the human Tec kinase. The human tec cDNAs can encode a peptide of 631 amino acid residues with a calculated molecular mass of 73,624. The predicted human Tec protein is highly homologous to those of the members of the Tec family including mouse Tec type IV (94% homology), mouse Tsk/Itk (60%), and human Btk (57%). The homology between human Tec and other members of the Tec family can be observed not only in the Src homology 3 (SH3), SH2, and kinase domains, but also in the N-terminal unique domain. Northern blot analysis demonstrated that the major transcripts of tec could be detected at 2.6 kb and 3.6 kb in a wide range of human hematopoietic cell lines including myeloid, B-, and T-cell lineages. Interestingly, high expression of the tec gene could be detected in all of the three patients examined with myelodysplastic syndrome. The human tec gene was mapped by fluorescence in situ hybridization (FISH) to chromosome 4p12.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009190 Myelodysplastic Syndromes Clonal hematopoietic stem cell disorders characterized by dysplasia in one or more hematopoietic cell lineages. They predominantly affect patients over 60, are considered preleukemic conditions, and have high probability of transformation into ACUTE MYELOID LEUKEMIA. Dysmyelopoietic Syndromes,Hematopoetic Myelodysplasia,Dysmyelopoietic Syndrome,Hematopoetic Myelodysplasias,Myelodysplasia, Hematopoetic,Myelodysplasias, Hematopoetic,Myelodysplastic Syndrome,Syndrome, Dysmyelopoietic,Syndrome, Myelodysplastic,Syndromes, Dysmyelopoietic,Syndromes, Myelodysplastic
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002894 Chromosomes, Human, Pair 4 A specific pair of GROUP B CHROMOSOMES of the human chromosome classification. Chromosome 4
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
October 1999, Proceedings of the National Academy of Sciences of the United States of America,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
April 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
January 2010, Immunology letters,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
January 1994, Immunogenetics,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
November 2009, European journal of immunology,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
March 1993, Oncogene,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
November 2009, The FEBS journal,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
November 2010, Journal of immunology (Baltimore, Md. : 1950),
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
March 1993, Oncogene,
K Sato, and H Mano, and T Ariyama, and J Inazawa, and Y Yazaki, and H Hirai
January 1999, The Journal of biological chemistry,
Copied contents to your clipboard!