On-axis and off-axis primary dose component in high energy photon beams. 1994

S Zefkili, and C Kappas, and J C Rosenwald
Institute Curie-Unité de Physique Médicale, Paris, France.

The depth dose of the primary dose component, on axis and off axis of six different x-ray beams, has been determined from transmission measurements in narrow beam geometry with and without flattening filter using a Perspex column of a cross section large enough to ensure electronic equilibrium. In order to derive the primary photon fluence, a correction for the scatter from the column has been applied according to the following method: A number of spectra taken from the literature have been used for computing a scatter coefficient Sc at different depths by convolution of dose spread arrays. Using the relationship between Sc and the single attenuation coefficient mu i to represent each entire spectrum, it has been possible to correct the experimental transmission curves iteratively, until the corresponding values of mu were stabilized and representative of the primary. The measured attenuation coefficients were found to have a linear increase as a function of the distance from the central axis for all the energies and types of linear accelerators. For the same nominal energy, this increase is different from one accelerator to another. The same phenomenon was observed for the attenuation coefficients obtained without the flattening filter in the same experimental conditions. The results are tentatively interpreted considering the angular variation of bremsstrahlung energy spectra with and without a flattening filter as calculated by a Monte Carlo method and they are consistent and useful to take accurately into account the softening of the beam as the off-axis distance increases.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011878 Radiotherapy The use of IONIZING RADIATION to treat malignant NEOPLASMS and some benign conditions. Radiotherapy, Targeted,Targeted Radiotherapy,Radiation Therapy,Radiation Therapy, Targeted,Radiation Treatment,Targeted Radiation Therapy,Radiation Therapies,Radiation Therapies, Targeted,Radiation Treatments,Radiotherapies,Radiotherapies, Targeted,Targeted Radiation Therapies,Targeted Radiotherapies,Therapies, Radiation,Therapies, Targeted Radiation,Therapy, Radiation,Therapy, Targeted Radiation,Treatment, Radiation
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)

Related Publications

S Zefkili, and C Kappas, and J C Rosenwald
January 1988, Medical physics,
S Zefkili, and C Kappas, and J C Rosenwald
January 1989, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society,
S Zefkili, and C Kappas, and J C Rosenwald
June 1997, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
S Zefkili, and C Kappas, and J C Rosenwald
July 1991, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
S Zefkili, and C Kappas, and J C Rosenwald
January 2008, Medical physics,
S Zefkili, and C Kappas, and J C Rosenwald
September 1979, Physics in medicine and biology,
S Zefkili, and C Kappas, and J C Rosenwald
April 1986, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
S Zefkili, and C Kappas, and J C Rosenwald
July 2006, Physics in medicine and biology,
S Zefkili, and C Kappas, and J C Rosenwald
December 1999, Physics in medicine and biology,
Copied contents to your clipboard!