Signal transduction differences between 5-hydroxytryptamine type 2A and type 2C receptor systems. 1994

K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
Department of Anesthesiology, Mount Sinai School of Medicine, City University of New York, New York 10029.

The cDNAs for human 5-hydroxytryptamine (5-HT)2C and 5-HT2A receptors were stably transfected separately into parent Chinese hamster ovary cells, and cell lines in which levels of transfected receptor protein expression and accumulation of inositol phosphates in response to 5-HT were comparable were chosen for study. The effect of activation of these receptors on 5-HT1B-like receptor-mediated responsiveness (i.e., inhibition of forskolin-stimulated cAMP accumulation) was studied. Activation of 5-HT2C receptors with 5-HT (0.1-100 microM) abolished the 5-HT1B-like response, which returned when 5-HT2C receptors were blocked with mesulergine (1 microM). Furthermore, the maximal response to 5-carboxytryptamine was reduced in a concentration-dependent manner by the 5-HT2A/5-HT2C-selective partial agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. In contrast, activation of 5-HT2A receptors with either 5-HT or (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane did not alter the 5-HT1B-like response. The reduction of 5-HT1B-like responsiveness produced by 5-HT2C receptor activation was independent of protein kinase C activation and increases in the intracellular calcium concentration. Although 5-HT2A and 5-HT2C receptors are strikingly similar in structure and pharmacology, and the signal transduction systems coupled to these receptors have been thought to be similar, if not identical, these data provide the first evidence for fundamental differences in the signal transduction systems of these 5-HT2 receptor subtypes.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
May 1994, Molecular pharmacology,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
December 2013, Sleep & breathing = Schlaf & Atmung,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
January 2010, International review of neurobiology,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
April 2003, Anesthesia and analgesia,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
December 2008, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
November 1994, Molecular pharmacology,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
September 2004, The Journal of pharmacology and experimental therapeutics,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
December 1997, Proceedings of the National Academy of Sciences of the United States of America,
K A Berg, and W P Clarke, and C Sailstad, and A Saltzman, and S Maayani
August 2010, Chinese medical journal,
Copied contents to your clipboard!