Homology dependence of targeted recombination at the Chinese hamster APRT locus. 1994

J B Scheerer, and G M Adair
University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957.

Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005785 Gene Conversion The asymmetrical segregation of genes during replication which leads to the production of non-reciprocal recombinant strands and the apparent conversion of one allele into another. Thus, e.g., the meiotic products of an Aa individual may be AAAa or aaaA instead of AAaa, i.e., the A allele has been converted into the a allele or vice versa. Polar Recombination,Polaron,Conversion, Gene,Conversions, Gene,Gene Conversions,Polar Recombinations,Polarons,Recombination, Polar,Recombinations, Polar
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000228 Adenine Phosphoribosyltransferase An enzyme catalyzing the formation of AMP from adenine and phosphoribosylpyrophosphate. It can act as a salvage enzyme for recycling of adenine into nucleic acids. EC 2.4.2.7. AMP Pyrophosphorylase,Transphosphoribosidase,APRTase,Phosphoribosyltransferase, Adenine,Pyrophosphorylase, AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012641 Selection, Genetic Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population. Natural Selection,Genetic Selection,Selection, Natural
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

J B Scheerer, and G M Adair
July 1983, Journal of molecular biology,
J B Scheerer, and G M Adair
October 1989, Journal of molecular biology,
J B Scheerer, and G M Adair
May 1993, Somatic cell and molecular genetics,
J B Scheerer, and G M Adair
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
J B Scheerer, and G M Adair
April 1987, Molecular and cellular biology,
J B Scheerer, and G M Adair
July 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!