The human immunodeficiency virus type 1 Rev protein shuttles between the cytoplasm and nuclear compartments. 1994

K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
Department of Microbiology and Immunology, Gade Institute, Bergen High Technology Centre, University of Bergen, Norway.

A retroviral regulatory protein, Rev (regulator of virion protein expression), is made in cells infected by human immunodeficiency virus (HIV). Rev is essential for the completion of the retroviral life cycle and interacts with the host cell at some posttranscriptional step in order to express the incompletely spliced HIV mRNAs from which HIV structural proteins are translated. Neither the host cell components nor the mechanisms responsible for this important regulation have been defined. We now report that Rev is a nucleocytoplasmic shuttle protein which is continuously transported between the cytoplasm, the nucleoli, and nucleoplasmic speckles enriched in RNA splicing and processing factors. The results show that Rev has the potential to interfere specifically with the splicing of the HIV pre-mRNA in the nucleoplasm and, next, guide such mRNAs to the cytoplasm for translation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
December 1997, The Journal of general virology,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
February 1996, Journal of virology,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
July 1994, Genes & development,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
June 1994, Journal of virology,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
July 1989, Virology,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
December 1995, The international journal of biochemistry & cell biology,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
July 2006, The Journal of biological chemistry,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
November 1989, DNA (Mary Ann Liebert, Inc.),
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
May 1998, The Journal of biological chemistry,
K H Kalland, and A M Szilvay, and K A Brokstad, and W Saetrevik, and G Haukenes
August 1990, Journal of virology,
Copied contents to your clipboard!