XIHbox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. 1994

M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232.

The cis-acting sequences that mediate insulin gene expression exclusively in pancreatic islet beta-cells are localized within the 5'-flanking region between nucleotides -340 and -91. We have identified an evolutionarily conserved, A+T-rich element at -201/-196 basepairs in the rat insulin II gene that is essential for efficient expression in beta-cells. Affinity-purified antibody to the XIHbox 8 protein super-shifted the major beta-cell-activator factor complex binding to the -201/-196 element. XIHbox 8 is a Xenopus endoderm-specific homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and developing pancreas. Antibody to XIHbox 8 specifically interacts with a 47-kilodalton protein present in this DNA complex. Immunohistochemical studies revealed XIHbox 8-like proteins within the nucleus of almost all mouse islet beta-cells and a subset of islet alpha- and beta-cells. These results are consistent with the proposal that an XIHbox 8-related homeoprotein of 47 kilodalton is required for expression of the mammalian insulin gene in beta-cells. Experiments conducted with antiserum raised to somatostatin transcription factor-1 (STF-1), a recently isolated mammalian XIHbox 8-related homeoprotein, indicate that the STF-1 protein is the mammalian homolog of Xenopus XIHbox 8.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007340 Insulinoma A benign tumor of the PANCREATIC BETA CELLS. Insulinoma secretes excess INSULIN resulting in HYPOGLYCEMIA. Adenoma, beta-Cell,Insuloma,beta-Cell Tumor,Adenoma, beta Cell,Adenomas, beta-Cell,Insulinomas,Insulomas,Tumor, beta-Cell,Tumors, beta-Cell,beta Cell Tumor,beta-Cell Adenoma,beta-Cell Adenomas,beta-Cell Tumors
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010190 Pancreatic Neoplasms Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA). Cancer of Pancreas,Pancreatic Cancer,Cancer of the Pancreas,Neoplasms, Pancreatic,Pancreas Cancer,Pancreas Neoplasms,Pancreatic Acinar Carcinoma,Pancreatic Carcinoma,Acinar Carcinoma, Pancreatic,Acinar Carcinomas, Pancreatic,Cancer, Pancreas,Cancer, Pancreatic,Cancers, Pancreas,Cancers, Pancreatic,Carcinoma, Pancreatic,Carcinoma, Pancreatic Acinar,Carcinomas, Pancreatic,Carcinomas, Pancreatic Acinar,Neoplasm, Pancreas,Neoplasm, Pancreatic,Neoplasms, Pancreas,Pancreas Cancers,Pancreas Neoplasm,Pancreatic Acinar Carcinomas,Pancreatic Cancers,Pancreatic Carcinomas,Pancreatic Neoplasm
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox

Related Publications

M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
November 1994, Molecular and cellular biology,
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
September 1991, Development (Cambridge, England),
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
March 2005, Developmental biology,
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
January 1991, Molecular and cellular biology,
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
September 1997, Proceedings of the National Academy of Sciences of the United States of America,
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
May 2002, Proceedings of the National Academy of Sciences of the United States of America,
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
April 1989, Development (Cambridge, England),
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
June 2004, Molecular and cellular biology,
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
February 2005, Developmental biology,
M Peshavaria, and L Gamer, and E Henderson, and G Teitelman, and C V Wright, and R Stein
March 2005, Zhonghua nei ke za zhi,
Copied contents to your clipboard!