Defective human interleukin 2 receptor gamma chain in an atypical X chromosome-linked severe combined immunodeficiency with peripheral T cells. 1994

J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
Institut National de la Santé et de la Recherche Médicale U132, Hôpital Necker-Enfants Malades, Paris, France.

X chromosome-linked severe combined immunodeficiency disease (SCIDX1) is characterized by the absence of T-cell and natural killer cell development and results from molecular mutations of the interleukin 2 receptor (IL-2R) gamma chain. The IL-2R gamma chain is a common component of the IL-2, IL-4, and IL-7 receptor systems, which may explain the severe immunophenotype in SCIDX1. We have previously described an atypical SCIDX1 syndrome demonstrating poorly functioning peripheral T cells, which we hypothesized to represent a variant allele at the SCIDX1 locus. We now demonstrate that a splice site mutation in the IL-2R gamma gene is responsible for this atypical SCIDX1. Aberrant RNA splicing resulted in the generation of two IL-2R gamma transcripts: an abundant, nonfunctional isoform containing a small intronic insertion and a second functional isoform with a single amino acid substitution present in limited amounts. Radiolabeled IL-2 binding studies revealed a 5-fold decreased level of expression of functional high-affinity IL-2Rs, which correlated with the quantity of full-length IL-2R gamma transcripts. Further analysis of the T-cell antigen receptor beta-chain repertoire of the patient's T cells demonstrated oligoclonality in multiple V beta families, thus strongly suggesting that the defect in the IL-2R gamma chain generated a limited number of peripheral T-cell clones. This atypical SCIDX1 patient demonstrates that certain IL-2R gamma chain abnormalities can also result in partial immunodeficiency phenotypes, potentially through differential effects on the IL-2, IL-4, or IL-7 receptor systems.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014960 X Chromosome The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species. Chromosome, X,Chromosomes, X,X Chromosomes
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016511 Severe Combined Immunodeficiency Group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. It is inherited as an X-linked or autosomal recessive defect. Mutations occurring in many different genes cause human Severe Combined Immunodeficiency (SCID). Bare Lymphocyte Syndrome,Immunodeficiency, Severe Combined,Omenn Syndrome,Immunodeficiency Syndrome, Severe Combined,Immunologic Deficiency, Severe Combined,Omenn's Syndrome,Reticuloendotheliosis, Familial,Severe Combined Immune Deficiency,Severe Combined Immunodeficiency Syndrome,Severe Combined Immunologic Deficiency,Bare Lymphocyte Syndromes,Combined Immunodeficiencies, Severe,Combined Immunodeficiency, Severe,Familial Reticuloendothelioses,Familial Reticuloendotheliosis,Immunodeficiencies, Severe Combined,Lymphocyte Syndrome, Bare,Lymphocyte Syndromes, Bare,Omenns Syndrome,Reticuloendothelioses, Familial,Severe Combined Immunodeficiencies,Syndrome, Bare Lymphocyte,Syndrome, Omenn,Syndrome, Omenn's,Syndromes, Bare Lymphocyte
D016693 Receptors, Antigen, T-Cell, alpha-beta T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules. Antigen Receptors, T-Cell, alpha-beta,T-Cell Receptors alpha-Chain,T-Cell Receptors beta-Chain,T-Cell Receptors, alpha-beta,TcR alpha-beta,Antigen T Cell Receptor, alpha Chain,Antigen T Cell Receptor, beta Chain,Receptors, Antigen, T Cell, alpha beta,T Cell Receptors, alpha beta,T-Cell Receptor alpha-Chain,T-Cell Receptor beta-Chain,T-Cell Receptor, alpha-beta,T Cell Receptor alpha Chain,T Cell Receptor beta Chain,T Cell Receptor, alpha beta,T Cell Receptors alpha Chain,T Cell Receptors beta Chain,TcR alpha beta,alpha-Chain, T-Cell Receptor,alpha-Chain, T-Cell Receptors,alpha-beta T-Cell Receptor,alpha-beta T-Cell Receptors,alpha-beta, TcR,beta-Chain, T-Cell Receptor,beta-Chain, T-Cell Receptors

Related Publications

J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
April 1993, Cell,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
September 1995, American journal of human genetics,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
August 1997, Acta paediatrica Japonica : Overseas edition,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
August 1993, Human molecular genetics,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
December 1995, Human genetics,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
December 1996, European journal of pediatrics,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
August 1995, Veterinary immunology and immunopathology,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
November 2008, Journal of immunology (Baltimore, Md. : 1950),
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
April 1994, Immunological reviews,
J P DiSanto, and F Rieux-Laucat, and A Dautry-Varsat, and A Fischer, and G de Saint Basile
January 1997, Journal of clinical immunology,
Copied contents to your clipboard!