Slow clones, reduced clonogenicity, and intraclonal recovery in X-irradiated L5178Y-S cell cultures. 1994

J Z Beer, and I Szumiel
Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD 20857.

Profound, long-lasting growth disturbances and reduced viability and clonogenicity were observed in suspension cultures of L5178Y-S (LY-S) murine leukemic lymphoblasts exposed to 0.25-6 Gy of X rays. In most cases, uncloned cultures grew at a reduced rate for periods corresponding to at least 100 cell generations, even when viability of such cultures returned to the normal level. These disturbances were analyzed in clones isolated using agar-supplemented medium. A slow phenotype was much more frequent among surviving clones isolated from LY-S cell cultures irradiated with 3 Gy of X rays than among clones isolated from nonirradiated controls. Growth of individual LY-S clones was affected to different extents, regardless of the clone's viability. The slowest clones had doubling time twice as long (22 h) as that of the control (10-12 h). More than 100 slow clones isolated from irradiated and nonirradiated cultures were followed for prolonged times, and some of them were further subcloned. The slow clones showed a high degree of heterogeneity, and selection for the slowest clone produced clones with increasing proliferative impairment and decreasing cloning efficiency. These results showed that progeny of X-irradiated LY-S cells contained many slowly growing cells, and that their presence affected the growth rate for scores of cell generations. The prolonged impairment of growth rate, viability, and clonogenicity appeared to depend on heritable lesions that were overcome as a result of intraclonal recovery. All slow clones were capable of such recovery, which for clones derived from irradiated cultures typically required periods corresponding to several scores of, but in some cases > 200, cell generations. Intraclonal recovery was much more rapid in slow clones isolated from nonirradiated cultures. This finding indicated that either slow phenotype depended on different cellular changes in the two groups of clones or mechanisms of intraclonal recovery were affected by radiation.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J Z Beer, and I Szumiel
May 1970, International journal of radiation biology and related studies in physics, chemistry, and medicine,
J Z Beer, and I Szumiel
August 1996, Radiation and environmental biophysics,
J Z Beer, and I Szumiel
January 1980, Bulletin de l'Academie polonaise des sciences. Serie des sciences biologiques,
Copied contents to your clipboard!