Characteristics and developmental changes of ANP-binding sites in rat adrenal glands during the perinatal period. 1994

S Deloof, and A Chatelain, and J P Dupouy
Laboratoire de Neuroendocrinologie du Développement, Université des Sciences et Techniques de Lille, Villeneuve d'Ascq, France.

The binding of rANP(1-28) to receptors was studied on crude adrenal membranes from fetal rats between day 17 of gestation and term and also neonatal rats between weeks 1 and 4. The binding assays were carried out using 125I-rANP(1-28) as radioligand incubated with membrane preparations (2 mg/ml) for 90 min at 22 degrees C. The binding was specific, saturable and reversible. The Scatchard analysis of the binding data revealed a single class of binding sites of high affinity (kd approximately 10(-10) mol/l) which did not change significantly at all stages of development studied. The binding sites presented a higher affinity for ANP analogues which contained the C-terminal phenylalanine arginine residue. The number of ANP receptors expressed per adrenal increased regularly in fetal and neonatal rats and the perinatal evolution of these concentrations of ANP receptors was related to the increase in the size of the adrenals. When the concentrations of ANP receptors was expressed per microgram DNA, the concentrations of ANP receptors were higher in neonatal rats than in fetal rats and reflected the number of receptors per cell. These results suggest that these binding sites mediate the biological actions of ANF in the adrenal gland during the perinatal period.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal

Related Publications

S Deloof, and A Chatelain, and J P Dupouy
August 1990, The Journal of endocrinology,
S Deloof, and A Chatelain, and J P Dupouy
December 1989, The Journal of endocrinology,
S Deloof, and A Chatelain, and J P Dupouy
March 1996, Molecular and cellular endocrinology,
S Deloof, and A Chatelain, and J P Dupouy
April 1989, Nihon Sanka Fujinka Gakkai zasshi,
S Deloof, and A Chatelain, and J P Dupouy
January 1980, Journal of steroid biochemistry,
S Deloof, and A Chatelain, and J P Dupouy
January 1972, Kosmicheskaia biologiia i meditsina,
S Deloof, and A Chatelain, and J P Dupouy
February 1970, Archives of disease in childhood,
S Deloof, and A Chatelain, and J P Dupouy
January 1961, Archives de biologie,
S Deloof, and A Chatelain, and J P Dupouy
December 1988, The American journal of physiology,
S Deloof, and A Chatelain, and J P Dupouy
October 1979, Ceskoslovenska pediatrie,
Copied contents to your clipboard!