Vertebrate embryonic induction: mesodermal and neural patterning. 1994

D S Kessler, and D A Melton
Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138.

Within the fertilized egg lies the information necessary to generate a diversity of cell types in the precise pattern of tissues and organs that comprises the vertebrate body. Seminal embryological experiments established the importance of induction, or cell interactions, in the formation of embryonic tissues and provided a foundation for molecular studies. In recent years, secreted gene products capable of inducing or patterning embryonic tissues have been identified. Despite these advances, embryologists remain challenged by fundamental questions: What are the endogenous inducing molecules? How is the action of an inducer spatially and temporally restricted? How does a limited group of inducers give rise to diversity of tissues? In this review, the focus is on the induction and patterning of mesodermal and neural tissues in the frog Xenopus laevis, with an emphasis on families of secreted molecules that appear to underlie inductive events throughout vertebrate embryogenesis.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development

Related Publications

D S Kessler, and D A Melton
August 2000, Current opinion in genetics & development,
D S Kessler, and D A Melton
January 1997, Annual review of neuroscience,
D S Kessler, and D A Melton
July 2007, Developmental biology,
D S Kessler, and D A Melton
May 2008, Nature reviews. Genetics,
D S Kessler, and D A Melton
February 1994, Science (New York, N.Y.),
D S Kessler, and D A Melton
January 1995, Perspectives on developmental neurobiology,
D S Kessler, and D A Melton
January 2001, International review of cytology,
D S Kessler, and D A Melton
October 2000, Developmental dynamics : an official publication of the American Association of Anatomists,
D S Kessler, and D A Melton
July 1995, Trends in genetics : TIG,
Copied contents to your clipboard!