Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. 1994

T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.

Maternally expressed Skn-1 protein is required for the correct specification of certain blastomere fates in early Caenorhabditis elegans embryos. Skn-1 contains a basic region similar to those of basic leucine zipper (bZIP) proteins but, paradoxically, it lacks a leucine zipper dimerization segment. Random sequence selection methods were used to show that Skn-1 binds to specific DNA sequences as a monomer. The Skn-1 basic region lies at the carboxyl terminus of an 85-amino acid domain that binds preferentially to a bZIP half-site and also recognizes adjacent 5' AT-rich sequences in the minor groove, apparently with an amino (NH2)-terminal "arm" related to those of homeodomain proteins. The intervening residues appear to stabilize interactions of these two subdomains with DNA. The Skn-1 DNA binding domain thus represents an alternative strategy for promoting binding of a basic region segment recognition helix to its cognate half-site. The results point to an underlying modularity in subdomains within established DNA binding domains.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
June 1998, Nature structural biology,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
July 1998, Proceedings of the National Academy of Sciences of the United States of America,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
September 1997, Genes & development,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
December 2005, Chembiochem : a European journal of chemical biology,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
December 1997, Journal of molecular biology,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
March 1998, FEBS letters,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
May 1997, Proceedings of the National Academy of Sciences of the United States of America,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
October 1990, Nucleic acids research,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
March 1991, Cell,
T K Blackwell, and B Bowerman, and J R Priess, and H Weintraub
December 2004, Biochemistry,
Copied contents to your clipboard!