Positional disparity sensitivity of neurons in the cat accessory optic system. 1994

K L Grasse
Department of Psychology, York University, Ontario, Canada.

There is considerable evidence supporting the view that the accessory optic system (AOS) and the closely associated nucleus of the optic tract (NOT) provide visual signals used in the control of optokinetic nystagmus (OKN). In frontal-eyed animals such as the cat and primate, the high degree of overlap in the visual fields of each eye, along with a substantial projection from the visual cortex, gives rise to an increased incidence of binocularly responsive neurons in the AOS. In previous studies, my collaborators and I have shown that visual cortical input to the AOS mediates ipsilateral eye responses and high speed tuning, and can function independently of the contralateral eye. However, beyond fairly gross assessments such as these, the binocular interactions of AOS cells have not been subject to detailed examination. The present study set out to determine whether the responses of binocular cells in the dorsal terminal nucleus (DTN) of the AOS are sensitive to horizontal retinal disparity. Single units were recorded from the DTN of anaesthetized, paralysed cats. A large random-dot pattern was moved under computer control at a constant velocity in the preferred and non-preferred direction. Convergent and divergent disparities were generated by deviating the visual axis of the contralateral (dominant) eye using wedge prisms. The responses of DTN units fell into three categories: (1) cells showing tuned excitatory responses (29% or 7 cells) consisting of a marked facilitation for a single or a limited range of disparities; (2) cells broadly tuned for inhibition (25% or 6 cells); and (3) cells relatively insensitive to disparity (46% or 11 cells), showing a relatively flat response profile across the entire range of disparity conditions, or cells without clear tuning. In summary, this study demonstrates that some AOS cells are sensitive to positional disparity and, therefore, this system may provide signals which specify the plane of motion for ocular stabilization. Some of these results have been presented in brief form [Grasse (1991a) Society of Neuroscience Abstracts, 17, 1380].

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010364 Pattern Recognition, Visual Mental process to visually perceive a critical number of facts (the pattern), such as characters, shapes, displays, or designs. Recognition, Visual Pattern,Visual Pattern Recognition
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D015348 Vision, Binocular The blending of separate images seen by each eye into one composite image. Binocular Vision

Related Publications

K L Grasse
April 2005, Journal of neurophysiology,
K L Grasse
October 1959, The Journal of comparative neurology,
K L Grasse
February 1982, The Journal of comparative neurology,
K L Grasse
September 1964, Annals of the New York Academy of Sciences,
K L Grasse
January 1984, Annual review of neuroscience,
K L Grasse
January 1985, Zhurnal evoliutsionnoi biokhimii i fiziologii,
Copied contents to your clipboard!