[Cardiologic applications of positron emission tomography]. 1994

H Schelbert, and J Czernin
Department of Molecular and Medical Pharmacology, UCLA School of Medicine.

Positron emission tomography (PET) expands the diagnostic possibilities of nuclear medicine techniques for the diagnosis of coronary artery disease and, especially, for the identification of myocardial viability. The presence of coronary artery disease can be detected by evaluation of myocardial blood flow at rest and during pharmacologically induced hyperemia with a sensitivity of 84 to 98% and a specificity of 78 to 100% according to recent studies. Comparative investigations in the same patients have demonstrated a significant gain in the diagnostic accuracy of PET as compared with single photon emission computed tomography (SPECT). PET has influenced even more profoundly the identification of myocardial viability. Measured against the functional outcome of regional contractile function after successful revascularization, an increase of glucose utilization relative to regional myocardial blood flow is 77 to 85% accurate in identifying reversibly injured myocardium. Conversely, PET is 78 to 92% accurate in identifying myocardium as irreversibly injured when pre-operative glucose uptake was reduced or absent. Recent studies have indicated that it is possible to predict to some extent post-revascularization improvement in left ventricular function as well as in congestive heart failure related symptoms in patients with ischemic cardiomyopathy. Furthermore, PET can identify patients with an increased risk of mortality and morbidity as a result of ischemic heart disease and, thus, stratify patients to the most appropriate and cost-effective therapeutic approach.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed
D016277 Ventricular Function, Left The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance. Left Ventricular Function,Function, Left Ventricular,Functions, Left Ventricular,Left Ventricular Functions,Ventricular Functions, Left
D017202 Myocardial Ischemia A disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow may be due to narrowing of the coronary arteries (CORONARY ARTERY DISEASE), to obstruction by a thrombus (CORONARY THROMBOSIS), or less commonly, to diffuse narrowing of arterioles and other small vessels within the heart. Severe interruption of the blood supply to the myocardial tissue may result in necrosis of cardiac muscle (MYOCARDIAL INFARCTION). Heart Disease, Ischemic,Ischemia, Myocardial,Ischemic Heart Disease,Disease, Ischemic Heart,Diseases, Ischemic Heart,Heart Diseases, Ischemic,Ischemias, Myocardial,Ischemic Heart Diseases,Myocardial Ischemias

Related Publications

H Schelbert, and J Czernin
May 1990, Der Internist,
H Schelbert, and J Czernin
July 1989, Deutsche medizinische Wochenschrift (1946),
H Schelbert, and J Czernin
January 1993, Revue medicale de Bruxelles,
H Schelbert, and J Czernin
December 1991, Current opinion in radiology,
H Schelbert, and J Czernin
January 1991, The British journal of clinical practice,
H Schelbert, and J Czernin
January 1992, Transactions of the Medical Society of London,
H Schelbert, and J Czernin
November 1984, Neurologic clinics,
H Schelbert, and J Czernin
November 2019, Sensors (Basel, Switzerland),
H Schelbert, and J Czernin
April 1996, Orvosi hetilap,
Copied contents to your clipboard!