Inosine-5'-monophosphate dehydrogenase activity is maintained in immortalized murine cells growth-arrested by serum deprivation. 1994

P B Stadler, and J Pennacchi, and J L Sherley
Department of Molecular Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111.

We have examined properties of IMPD activity in soluble extracts from immortalized murine epithelial and fibroblastic cells. The absence of significant xanthine oxidase activity in these extracts allowed the use of a spectrophotometric assay to study the enzyme activity. The observed enzymatic activity had subcellular localization and kinetic properties similar to those of previously described mammalian IMPD from other sources. Analysis of IMPD activity in extracts from cells in different states of growth related to serum concentration gave a surprising result. Extracts from exponentially growing cells exhibited a level of IMPD activity similar to that of extracts from quiescent cells arrested by serum-deprivation. In previous studies, the cellular variable designated to account for changes in IMPD activity was proliferative rate. Our findings suggest that either proliferative rate is not the functionally significant variable related to IMPD regulation or that there are other factors that can supersede it in certain contexts. Given the role of the enzyme in regulating the synthesis of guanine nucleotides, which are key regulatory molecules for many cellular processes, this may indeed be the case. Using immortalized cell lines growth-arrested by serum deprivation, we have experimentally isolated the enzyme activity from the previously assigned variable of growth rate. Based on our findings we propose that regulation of IMPD activity is more appropriately related to proliferative capacity as opposed to proliferative rate.

UI MeSH Term Description Entries
D007168 IMP Dehydrogenase An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205. Inosinic Acid Dehydrogenase,Inosine-5-Monophosphate Dehydrogenase,Acid Dehydrogenase, Inosinic,Dehydrogenase, IMP,Dehydrogenase, Inosine-5-Monophosphate,Dehydrogenase, Inosinic Acid,Inosine 5 Monophosphate Dehydrogenase
D007291 Inosine Monophosphate Inosine 5'-Monophosphate. A purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. IMP,Inosinic Acid,Ribosylhypoxanthine Monophosphate,Inosinic Acids,Sodium Inosinate,Acid, Inosinic,Acids, Inosinic,Inosinate, Sodium,Monophosphate, Inosine,Monophosphate, Ribosylhypoxanthine
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D016895 Culture Media, Serum-Free CULTURE MEDIA free of serum proteins but including the minimal essential substances required for cell growth. This type of medium avoids the presence of extraneous substances that may affect cell proliferation or unwanted activation of cells. Protein-Free Media,Serum-Free Media,Low-Serum Media,Culture Media, Serum Free,Low Serum Media,Media, Low-Serum,Media, Protein-Free,Media, Serum-Free,Media, Serum-Free Culture,Protein Free Media,Serum Free Media,Serum-Free Culture Media
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

P B Stadler, and J Pennacchi, and J L Sherley
January 2009, Advances in enzymology and related areas of molecular biology,
P B Stadler, and J Pennacchi, and J L Sherley
March 2019, Chemical research in toxicology,
P B Stadler, and J Pennacchi, and J L Sherley
October 1985, Analytical biochemistry,
P B Stadler, and J Pennacchi, and J L Sherley
February 2003, Bioorganic & medicinal chemistry letters,
P B Stadler, and J Pennacchi, and J L Sherley
January 1998, Molecular biology of the cell,
P B Stadler, and J Pennacchi, and J L Sherley
January 1987, Leukemia research,
P B Stadler, and J Pennacchi, and J L Sherley
November 2016, Yao xue xue bao = Acta pharmaceutica Sinica,
P B Stadler, and J Pennacchi, and J L Sherley
January 1994, Advances in experimental medicine and biology,
P B Stadler, and J Pennacchi, and J L Sherley
March 2013, Acta crystallographica. Section F, Structural biology and crystallization communications,
Copied contents to your clipboard!