Hydrogen peroxide release by mitochondria from normal and hypoxic lungs. 1994

W J Russell, and R M Jackson
Birmingham VA Medical Center, Alabama.

Ischemia/reperfusion mechanisms contribute to lung injury after transplantation, pulmonary embolism, and resolution of atelectasis. Alveolar tissue becomes hypoxic and deprived of substrate only when both ventilation and perfusion are interrupted, a situation modeled in vivo by complete, unilateral lung collapse. Because previously hypoxic mitochondria may be an important intracellular source of superoxide and hydrogen peroxide (H2O2) during reperfusion and re-oxygenation, the authors, in this study, investigated whether mitochondrial H2O2 release changed as a result of lung hypoxia/hypoperfusion resulting from collapse. Mitochondria were isolated from hypoxic (previously collapsed) right or contralateral left rabbits' lungs and from control rabbits' lungs. Mitochondrial H2O2 release, a marker of superoxide production, was measured fluorometrically after incubation with or without 1 mmol/L cyanide and 0.1 mmol/L nicotinamide adenine dinucleotide. Mitochondrial recovery was determined by assaying succinate dehydrogenase activity in mitochondrial preparations and lung homogenates. Lung succinate dehydrogenase activity and mitochondrial recovery were comparable among groups. Calculated lung mitochondrial content did not change (control subjects: left 7.9 +/- 0.5, right 13.8 +/- 1.7; hypoxic: left 10.3 +/- 1.3, right 10.5 +/- 2.4, all mg mitochondrial protein/lung). Mitochondria released hydrogen peroxide at approximately 5.6 nmol/h/mg pro in buffer alone and 14.8 nmol/h/mg pro in buffer with cyanide and nicotinamide adenine dinucleotide. However, lung collapse and resulting hypoxia caused no change in mitochondrial number or capacity to release H2O2 in vitro. Based on these findings, it is suggested that other sources of reactive oxygen metabolites, including xanthine oxidase and activated neutrophils, contribute to the oxidant injury observed in this model.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W J Russell, and R M Jackson
February 1991, Mechanisms of ageing and development,
W J Russell, and R M Jackson
June 1993, Free radical biology & medicine,
W J Russell, and R M Jackson
October 1975, Biochimica et biophysica acta,
W J Russell, and R M Jackson
June 2005, British journal of pharmacology,
W J Russell, and R M Jackson
October 2003, Free radical biology & medicine,
W J Russell, and R M Jackson
August 2008, FEBS letters,
W J Russell, and R M Jackson
January 2004, Biological chemistry,
W J Russell, and R M Jackson
October 2005, Journal of bioenergetics and biomembranes,
W J Russell, and R M Jackson
September 1982, Biochimica et biophysica acta,
Copied contents to your clipboard!