Rous-Whipple Award Lecture. Contributions to the physiology and pathology of the Golgi apparatus. 1994

N K Gonatas
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.

The importance of the Golgi apparatus in the transport, processing, and targeting of proteins destined for secretion, plasma membranes, and lysosomes has emerged from numerous studies. In this paper we review studies from our laboratory dealing with 1) the Golgi apparatus during mitosis and the role of microtubules in maintaining the structure of the organelle, 2) the endocytosis of antibodies, exogenous lectins, and toxins into the Golgi apparatus of several cells including neurons in vivo and in vitro, 3) the traffic of MG-160, a membrane sialoglycoprotein of the medial cisternae of the Golgi apparatus, from the trans-Golgi network to the Golgi cisternae, and 4) the involvement of the Golgi apparatus of motor neurons in the pathogenesis of amyotrophic lateral sclerosis. We conclude with a summary of ongoing work on the primary structure of MG-160 and introduce evidence suggesting that this intrinsic membrane protein of the Golgi apparatus may be involved in the regulation of endogenous, autocrine, basic fibroblast growth factor. We hope that this review will stimulate studies on the Golgi apparatus of neurons, which may lead to the discovery of neuron-specific properties of this important organelle and its involvement in the pathogenesis of neurodegenerative disorders.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000690 Amyotrophic Lateral Sclerosis A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94) ALS - Amyotrophic Lateral Sclerosis,Lou Gehrig Disease,Motor Neuron Disease, Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis With Dementia,Amyotrophic Lateral Sclerosis, Guam Form,Amyotrophic Lateral Sclerosis, Parkinsonism-Dementia Complex of Guam,Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia Complex 1,Charcot Disease,Dementia With Amyotrophic Lateral Sclerosis,Gehrig's Disease,Guam Disease,Guam Form of Amyotrophic Lateral Sclerosis,Lou Gehrig's Disease,Lou-Gehrigs Disease,ALS Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis Parkinsonism Dementia Complex 1,Amyotrophic Lateral Sclerosis, Parkinsonism Dementia Complex of Guam,Disease, Guam,Disease, Lou-Gehrigs,Gehrig Disease,Gehrigs Disease,Sclerosis, Amyotrophic Lateral
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

N K Gonatas
March 1998, The American journal of pathology,
N K Gonatas
September 1982, The American journal of pathology,
N K Gonatas
October 1979, The American journal of pathology,
N K Gonatas
October 1993, The American journal of pathology,
N K Gonatas
December 1981, The American journal of pathology,
N K Gonatas
November 1993, The American journal of pathology,
N K Gonatas
October 1996, The American journal of pathology,
N K Gonatas
October 1983, The American journal of pathology,
N K Gonatas
June 2003, The American journal of pathology,
N K Gonatas
April 2000, The American journal of pathology,
Copied contents to your clipboard!