Nerve growth factor promotes neurite outgrowth in guinea pig myenteric plexus ganglia. 1994

M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
Department of Surgery, University of Michigan, Ann Arbor 48109-0331.

Nerve growth factor (NGF) has important developmental actions in both central and peripheral nervous systems. Primary cultures of neonatal guinea pig myenteric plexus ganglia were used to examine the ability of NGF to stimulate morphological development in enteric neurons. NGF, in the presence of a serum-free medium, produced dose-dependent increases in neurite density, significant at 1 ng/ml and maximal at 100 ng/ml (4.5-fold increase vs. control). Maximum neurite length was also significantly increased at 1 ng/ml, with maximal effects at 100 ng/ml. Coincubation of NGF (50 ng/ml) with monoclonal NGF antibodies abolished increases in both neurite density (128 +/- 19 processes/mm for control, 369 +/- 19 for NGF, 183 +/- 28 for NGF+monoclonal antibodies) and neurite length. Exposure of enteric neurons to low concentrations of NGF (1 ng/ml) was also associated with increased mRNA levels for cytoskeletal genes. alpha-Tubulin mRNA levels were increased 3.9 +/- 0.7 times basal at 48 h. mRNA levels for microtubule-associated protein 2 were increased threefold at 48 h of NGF incubation. NGF demonstrates activities in cultured enteric ganglia that stimulate morphological development.

UI MeSH Term Description Entries
D008297 Male Males
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009197 Myenteric Plexus One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38) Auerbach's Plexus,Auerbach Plexus,Auerbachs Plexus,Plexus, Auerbach's,Plexus, Myenteric
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
August 2013, Biochimica et biophysica acta,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
September 1990, Regulatory peptides,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
May 2008, Neuroscience letters,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
January 2014, Frontiers in molecular neuroscience,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
November 2003, Neuroscience letters,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
November 1987, Brain research,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
December 2002, American journal of physiology. Gastrointestinal and liver physiology,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
January 1986, Peptides,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
July 2010, FEBS letters,
M W Mulholland, and G Romanchuk, and K Lally, and D M Simeone
December 1982, The Journal of physiology,
Copied contents to your clipboard!