Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels. 1994

F Cabell, and D S Weiss, and J M Price
Department of Physiology and Biophysics, University of South Florida, Tampa 33612.

The aim of the present study was to investigate the contribution of large-conductance calcium-activated potassium (large-conductance KCa) channels to adenosine (Ado)- and nitroprusside-mediated relaxation in small coronary arteries. Canine subepicardial arteries (170 +/- 23 microns at 120 mmHg) were studied as in vitro pressurized vessels. Pressure-diameter experiments showed myogenic tone over a physiological range of pressures. Tone was increased with the thromboxane A2 analogue 9,11-dideoxy-11 alpha,9 alpha-epoxy-methanoprostaglandin F2 alpha (U-46619). Tetraethylammonium (TEA+; 1 mM) significantly inhibited Ado-induced [and by implication, adenosine 3',5'-cyclic monophosphate (cAMP)-induced] relaxations at Ado concentrations ranging from 0.1 to 10 microM with maximal inhibition (61 +/- 8%) at 1 microM Ado. The large-conductance KCa-channel blocker iberiotoxin (IbTX; 0.01-0.1 microM) inhibited Ado-mediated relaxation in a concentration-dependent manner. Inhibition by IbTX increased with increasing vessel pressure (i.e., 45 +/- 12% at 40 mmHg and 83 +/- 20% at 120 mmHg). TEA+ had a minimal effect (8 +/- 3%) on relaxation induced by nitroprusside. Similar results were found with acetylcholine and bradykinin. These results suggest that (in dog coronary arteries with diameter < 200 microns) large-conductance KCa-channel modulation may play a major role in cAMP-mediated relaxation but is not significant in guanosine 3',5'-cyclic monophosphate-mediated relaxation.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011450 Prostaglandin Endoperoxides, Synthetic Synthetic compounds that are analogs of the naturally occurring prostaglandin endoperoxides and that mimic their pharmacologic and physiologic activities. They are usually more stable than the naturally occurring compounds. Prostaglandin Endoperoxide Analogs,Prostaglandin Endoperoxide Analogues,Synthetic Prostaglandin Endoperoxides,Analogues, Prostaglandin Endoperoxide,Endoperoxide Analogues, Prostaglandin,Endoperoxides, Synthetic Prostaglandin
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

F Cabell, and D S Weiss, and J M Price
November 1994, The American journal of physiology,
F Cabell, and D S Weiss, and J M Price
January 2001, The Journal of membrane biology,
F Cabell, and D S Weiss, and J M Price
May 2000, The Journal of membrane biology,
F Cabell, and D S Weiss, and J M Price
March 2012, The Journal of general physiology,
F Cabell, and D S Weiss, and J M Price
July 2002, Current medicinal chemistry,
F Cabell, and D S Weiss, and J M Price
September 1996, The Journal of physiology,
F Cabell, and D S Weiss, and J M Price
November 2019, Clinical and experimental pharmacology & physiology,
F Cabell, and D S Weiss, and J M Price
August 2013, Sheng li ke xue jin zhan [Progress in physiology],
F Cabell, and D S Weiss, and J M Price
March 1998, The Journal of membrane biology,
Copied contents to your clipboard!