Ischemic depolarization during halothane-nitrous oxide and isoflurane-nitrous oxide anesthesia. An examination of cerebral blood flow threshold and times to depolarization. 1994

M Verhaegen, and M M Todd, and D S Warner
Department of Anesthesia, University of Iowa College of Medicine, Iowa City.

BACKGROUND Isoflurane-N2O anesthesia (as compared with halothane-N2O) reduces the cerebral blood flow (CBF) at which electroencephalographic changes occur in humans subjected to carotid occlusion. In contrast, no differences were seen in rats when cortical depolarization (instead of the electroencephalogram) was used as the ischemic marker during equi-MAC isoflurane-N2O and halothane-N2O anesthesia. To extend these findings, we used laser-Doppler flowmetry to continuously examine CBF (CBFLDF) and attempted to better define the relation between CBF and the time to depolarization (as a measure of the rate of energy depletion after ischemia). METHODS Cortical CBFLDF was measured in normothermic, normocarbic rats, and the cortical direct-current potential was recorded using glass microelectrodes. Animals were anesthetized with 0.75 MAC halothane or 0.75 MAC isoflurane, both in 60% N2O. After baseline recordings, both carotid arteries were occluded. Five minutes later mean arterial pressure was rapidly reduced to and held at target values of 50, 45, 40, 30 or 0 mmHg. This mean arterial pressure was maintained (and CBFLDF was continually monitored) until depolarization occurred, or for a maximum of 20 min. RESULTS CBFLDF values before and after carotid occlusion (but before hypotension) were similar in the two groups. As intended, CBFLDF decreased as postocclusion mean arterial pressure was reduced and the incidence of cortical depolarization increased. The delay until depolarization, defined as the interval between the moment CBFLDF reached 25% of the preocclusion baseline until depolarization occurred, decreased as CBFLDF was reduced. However, there were no intergroup differences except after a circulatory arrest (CBF = 0), where cortical depolarization was seen approximately 30 s later in isoflurane-N2O-anesthetized rats. CONCLUSIONS The CBF threshold for cortical depolarization as measured by laser-Doppler flowmetry did not differ significantly between halothane-N2O- and isoflurane-N2O-anesthetized rats. There were also no important differences in the times until depolarization, other than a small difference when flow = 0. If the time to depolarization is reflects the potential ischemic injury, the it is unlikely that isoflurane-N2O conveys any protective advantage relative to halothane-N2O.

UI MeSH Term Description Entries
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D008297 Male Males
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009609 Nitrous Oxide Nitrogen oxide (N2O). A colorless, odorless gas that is used as an anesthetic and analgesic. High concentrations cause a narcotic effect and may replace oxygen, causing death by asphyxia. It is also used as a food aerosol in the preparation of whipping cream. Laughing Gas,Nitrogen Protoxide,Gas, Laughing,Oxide, Nitrous
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

M Verhaegen, and M M Todd, and D S Warner
June 1984, Anesthesia and analgesia,
M Verhaegen, and M M Todd, and D S Warner
September 1988, Anesthesiology,
M Verhaegen, and M M Todd, and D S Warner
May 1980, Archives of surgery (Chicago, Ill. : 1960),
M Verhaegen, and M M Todd, and D S Warner
May 1982, Masui. The Japanese journal of anesthesiology,
M Verhaegen, and M M Todd, and D S Warner
January 1988, Acta anaesthesiologica Scandinavica,
M Verhaegen, and M M Todd, and D S Warner
April 1997, Journal of neurosurgical anesthesiology,
M Verhaegen, and M M Todd, and D S Warner
February 1995, Anesthesiology,
Copied contents to your clipboard!