Role of prostaglandin-mediated cyclic AMP formation in protein kinase C-dependent secretion of atrial natriuretic peptide in rat cardiomyocytes. 1994

D J Church, and V Van der Bent, and M B Vallotton, and U Lang
Department of Medicine, Geneva University Hospital, Switzerland.

The role of endogenous prostaglandin production in phorbol diester-induced myocardial atrial natriuretic peptide (ANP) secretion was investigated in cultured spontaneously beating ventricular rat cardiomyocytes. Incubation of cells with 4 beta-phorbol 12-myristate 13-acetate (PMA; 0.1 microM) led to a rapid response in ANP release, a response accompanied by increases in cellular prostacyclin (PGI2) production, cyclic AMP (cAMP) formation and spontaneous contraction frequency. Although PMA-induced ANP secretion exhibited the pharmacological profile of a protein kinase C (PKC)-mediated event, the response was abolished in the presence of the cyclo-oxygenase inhibitors indomethacin (10 microM) and diclofenac (1 microM), indicating that endogenous prostaglandin production is responsible for PMA-induced ANP secretion in this system. Confirming this, PMA-induced ANP secretion was strongly correlated with endogenous formation of 6-oxo-prostaglandin F1 alpha (r = 0.93, P < 0.0005, n = 11), and exogenously applied PGI2, prostaglandin E2 (PGE2) or prostaglandin F2 alpha (PGF2 alpha) elicited simultaneous increases in cAMP formation, contraction frequency and ANP secretion in these cells. Furthermore, PMA-induced cAMP formation was abolished in the presence of either diclofenac or indomethacin, whereas the cAMP-elevating agent forskolin (0.1 microM) mimicked the secretory and chronotropic effect of PMA in these cells. A role for cAMP in PMA-induced ANP secretion was also apparent insofar as PMA-induced ANP release was substantially decreased in the presence of the Rp-diastereomer of 3',5'-cyclic adenosine monophosphorothioate (Rp-cAMPS; 10 microM), whereas the cAMP-mimetic agent dibutyryl cAMP (10 microM) provoked a rapid increase in ANP secretion in this system. Finally, the Ca(2+)-channel antagonist nifedipine (0.1 microM) severely decreased PGI2-, PGE2- and PMA-induced ANP secretion without affecting PGF2 alpha-induced peptide release, suggesting that PGI2 and/or PGE2, but not PGF2 alpha, are the prostanoids involved in PMA-induced ANP release. Taken together, these results suggest that PKC activation induces ANP secretion in spontaneously beating rat ventricular cardiomyocytes via an autocrine pathway involving increased PGI2 and/or PGE2 formation, a response leading to the activation of a myocardial adenylate cyclase and, subsequently, to that of a nifedipine-sensitive Ca2+ channel.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

D J Church, and V Van der Bent, and M B Vallotton, and U Lang
June 1986, The Journal of biological chemistry,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
April 1983, Biochimica et biophysica acta,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
November 1987, FEBS letters,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
September 2002, Endocrinology,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
May 1994, The Journal of biological chemistry,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
March 1988, Endocrinology,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
October 2003, The Journal of biological chemistry,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
February 1983, Nutrition reviews,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
March 1988, The Journal of biological chemistry,
D J Church, and V Van der Bent, and M B Vallotton, and U Lang
April 1976, Nature,
Copied contents to your clipboard!