Retinotopic and nonretinotopic field potentials in cat visual cortex. 1994

M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115.

Two types of field potentials were identified in cat visual cortex using contrast reversal of oriented bar gratings: a short-latency fast-local component with a retinotopic organization similar to that seen with single-unit discharges at the same cortical site, and a slow, nonretinotopic component with a longer peak latency. The slow-distributed component had an extensive receptive field mapped by measuring the amplitude of binary kernels and showed strong inhibitory interactions within the receptive field. The peak latency of the slow-local component increased with distance from the retinotopic center, suggesting a possible conduction delay. Both components showed some orientation bias depending on the laminar location, but the bias could be independent of the orientation preferred by single units in the immediate vicinity. The present findings indicate that locally generated field potentials reflect cortical mechanisms for nonlinear integration over wide areas of the visual field.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010364 Pattern Recognition, Visual Mental process to visually perceive a critical number of facts (the pattern), such as characters, shapes, displays, or designs. Recognition, Visual Pattern,Visual Pattern Recognition
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D015350 Contrast Sensitivity The ability to detect sharp boundaries (stimuli) and to detect slight changes in luminance at regions without distinct contours. Psychophysical measurements of this visual function are used to evaluate VISUAL ACUITY and to detect eye disease. Visual Contrast Sensitivity,Sensitivity, Contrast,Sensitivity, Visual Contrast

Related Publications

M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
January 2005, Visual neuroscience,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
December 2003, Journal of neuroscience methods,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
April 1981, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
January 1974, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
August 1992, Neuroreport,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
November 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
December 2007, Cerebral cortex (New York, N.Y. : 1991),
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
January 2009, Neuron,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
July 2016, Biological psychology,
M Kitano, and K Niiyama, and T Kasamatsu, and E E Sutter, and A M Norcia
May 2024, Neuroscience letters,
Copied contents to your clipboard!