Location of M13 coat protein in sodium dodecyl sulfate micelles as determined by NMR. 1994

C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
Laboratory of Biophysical Chemistry, NSR Center, University of Nijmegen, The Netherlands.

The major coat protein (gVIIIp) of bacteriophage M13 solubilized in sodium dodecyl sulfate (SDS) detergent micelles was used as a model system to study this protein in the lipid-bound form. In order to probe the position of gVIIIp relative to the SDS micelles, stearate was added, spin-labeled at the 5- or 16-position with a doxyl group containing a stable nitroxide radical. The average position of the spin-labels in the micelles was derived from the line broadening of the resonances in the 13C spectrum of SDS. Subsequently, we derived a model of the relative position of gVIIIp in the SDS micelle from the effect of the spin-labels on the gVIIIp resonances, monitored via 1H-15N HSQC and TOCSY experiments. The results are consistent with the structure of gVIIIp having two helical strands. One strand is a long hydrophobic helix that spans the micelle, and the other is a shorter amphipathic helix on the surface of the micelle. These results are in good agreement with the structure of gVIIIp in membranes proposed by McDonnell et al. on the basis of solid state NMR data [McDonnell, P. A., Shon, K., Kim, Y., & Opella, S. J. (1993) J. Mol. Biol. 233, 447-463]. This study indicates that high-resolution NMR on this membrane protein, solubilized in detergent micelles, is a very suitable technique for mimicking these proteins in their natural environment. Furthermore, the data indicate that the structure of the micelle near the C-terminus of the major coat protein is distorted.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012967 Sodium Dodecyl Sulfate An anionic surfactant, usually a mixture of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and toothpastes; also as research tool in protein biochemistry. Sodium Lauryl Sulfate,Irium,Dodecyl Sulfate, Sodium,Lauryl Sulfate, Sodium,Sulfate, Sodium Dodecyl,Sulfate, Sodium Lauryl
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin

Related Publications

C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
January 1980, Biochemical and biophysical research communications,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
July 1997, Biochemistry,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
June 1990, European journal of biochemistry,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
July 1997, Biochemistry,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
February 2015, Magnetic resonance in chemistry : MRC,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
April 2011, Journal of colloid and interface science,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
January 1975, Journal of agricultural and food chemistry,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
March 2005, Colloids and surfaces. B, Biointerfaces,
C H Papavoine, and R N Konings, and C W Hilbers, and F J van de Ven
June 1990, Biochemistry,
Copied contents to your clipboard!