Thrombin-bound structure of an EGF subdomain from human thrombomodulin determined by transferred nuclear Overhauser effects. 1994

J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada.

The EGF-like domains in human thrombomodulin interact with and change the specificity of thrombin from a procoagulant enzyme to an anticoagulant enzyme. Recent experiments identified the minimal thrombin-binding region of thrombomodulin as the most acidic loop of the fifth EGF-like domain with a sequence of E408CPEGYILDDGFI420CTDIDE. High-resolution NMR spectroscopy was employed to characterize the interaction of a des-Ile420 thrombomodulin peptide, Cys1(409)Pro2Glu3Gly4Tyr5Ile6- Leu7Asp8Asp9Gly10Phe11Cys12Thr13Asp14Ile15Asp16Glu17(426), with its target coagulation protein, thrombin. The disulfide-bonded peptide was found to be structured only upon binding, while neither the linear nor the cyclized peptide exhibited any structural preference free in solution. The thrombin-bound structure of the cyclic thrombomodulin peptide was determined by transferred nuclear Overhauser effects (transferred NOEs) and by distance geometry and Monte Carlo calculations. The thrombin-bound cyclic peptide assumes an overall conformation similar to those observed in the free but intact EGF molecules. There is a type II beta-turn involving residues Pro2-Tyr5, followed by an optimized antiparallel beta-sheet involving residues Gly4-Asp8 and residues Phe11-Ile15. The thrombomodulin peptide provides a potential thrombin-binding surface between residues Tyr5 and Phe11, which are brought close by a chain reversal within the central beta-sheet. Comparison of the thrombin-bound structure of the EGF-like subdomain with other thrombin-peptide complexes revealed that a common thrombin-binding surface can be organized by different secondary structure elements with entirely different peptide sequences. The thrombin-bound structure of the thrombomodulin peptide may serve as a basis to understand the regulatory functions of thrombomodulin and as a guide for the design of specific inhibitors for thrombin.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
May 1990, Biochemistry,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
June 1983, Biochemistry,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
October 1992, Biochemistry,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
May 2000, Journal of biomolecular NMR,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
May 1998, Biochemistry,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
February 1996, Protein science : a publication of the Protein Society,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
November 1996, The Journal of biological chemistry,
J Srinivasan, and S Hu, and R Hrabal, and Y Zhu, and E A Komives, and F Ni
January 2003, Methods in enzymology,
Copied contents to your clipboard!