Halothane and cyclopiazonic acid modulate Ca-ATPase oligomeric state and function in sarcoplasmic reticulum. 1994

B S Karon, and J E Mahaney, and D D Thomas
Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455.

We have studied the effects of cyclopiazonic acid (CPA) and halothane on the enzymatic activity, oligomeric state, and conformational equilibrium of the Ca-ATPase in skeletal muscle sarcoplasmic reticulum (SR). CPA is a potent inhibitor of Ca-ATPase activity, and this inhibition is competitive with respect to ATP concentration. Time-resolved phosphorescence anisotropy was used to detect the fraction of Ca-ATPase monomers, dimers, and larger aggregates in the absence and presence of CPA. CPA increased the fraction of dimers and larger aggregates of the Ca-ATPase. Addition of halothane to SR, or detergent solubilization of the Ca-ATPase, increased the apparent KI of CPA inhibition, and increased the fraction of Ca-ATPase present as monomers. CPA stabilized the E2 conformational state of the Ca-ATPase relative to the E1 and E2-P states, as measured by fluorescein 5-isothiocyanate fluorescence and enzyme phosphorylation from inorganic phosphate. E2-P formation in the presence of CPA was partially restored by halothane and solubilization. We conclude that CPA inhibits the Ca-ATPase in part by overstabilizing dimers or small oligomers of the Ca-ATPase, which is correlated with stabilization of the E2 conformation of the enzyme.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005454 Fluorescence Polarization Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction. Anisotropy, Fluorescence,Fluorescence Anisotropy,Polarization, Fluorescence,Anisotropies, Fluorescence,Fluorescence Anisotropies,Fluorescence Polarizations,Polarizations, Fluorescence
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

B S Karon, and J E Mahaney, and D D Thomas
November 1994, Biochemistry,
B S Karon, and J E Mahaney, and D D Thomas
July 1993, Biochemistry,
B S Karon, and J E Mahaney, and D D Thomas
October 1993, British journal of pharmacology,
B S Karon, and J E Mahaney, and D D Thomas
December 1992, Seikagaku. The Journal of Japanese Biochemical Society,
B S Karon, and J E Mahaney, and D D Thomas
January 1992, Advances in experimental medicine and biology,
B S Karon, and J E Mahaney, and D D Thomas
June 1993, Nihon rinsho. Japanese journal of clinical medicine,
B S Karon, and J E Mahaney, and D D Thomas
January 1987, Nauchnye doklady vysshei shkoly. Biologicheskie nauki,
B S Karon, and J E Mahaney, and D D Thomas
October 1989, The Journal of biological chemistry,
B S Karon, and J E Mahaney, and D D Thomas
May 2000, Biochemical and biophysical research communications,
Copied contents to your clipboard!