Myosin catalytic domain flexibility in MgADP. 1994

D Raucher, and C P Sár, and K Hideg, and P G Fajer
Institute of Molecular Biophysics, Florida State University, Tallahassee 32306-3015.

Conventional EPR studies of muscle fibers labeled with a novel alpha-iodoketo spin label at Cys-707 of the myosin head revealed substantial internal domain reorganization on the addition of ADP to rigor fibers. The spin probes that are well-ordered in the rigor state become disordered and form two distinct populations. These orientational changes do not correspond to rotation of the myosin catalytic domain as a whole because other probes (maleimide and iodoacetamide nitroxides attached to the same Cys-707 of myosin head) report only a small (5-10 degrees) torsional rotation and little or no change in the tilt angle [Ajtai et al. (1992) Biochemistry 31, 207-17; Fajer (1994) Biophys. J. 66, 2039-50]. In the presence of ADP, the labeled domain becomes more flexible and executes large-amplitude microsecond motions, as measured by saturation-transfer EPR with rates (tau r = 150 microseconds) intermediate between the rotations of detached (tau r = 7 microseconds) and rigor heads (tau r = 2500 microseconds). This finding contrasts with an absence of global motion of the myosin head in ADP (tau r = 2200 microseconds) as reported by the maleimide spin label. Our results imply that the myosin head in a single chemical state (AM.ADP) is capable of attaining many internal configurations, some of which are dynamic. The presence of these slow structural fluctuations might be related to the slow release of the hydrolysis products of actomyosin ATPase.

UI MeSH Term Description Entries
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin

Related Publications

D Raucher, and C P Sár, and K Hideg, and P G Fajer
March 2021, The Journal of general physiology,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
September 1997, Biochemistry,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
January 2000, Biological chemistry,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
November 2016, Proteins,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
November 1990, Biochemistry,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
December 1995, Biochemistry,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
May 2006, Biochemistry,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
November 2014, Proteins,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
December 2015, American journal of physiology. Heart and circulatory physiology,
D Raucher, and C P Sár, and K Hideg, and P G Fajer
September 1995, Biophysical journal,
Copied contents to your clipboard!