Glucocorticoid and cAMP increase fatty acid synthetase mRNA in human fetal lung explants. 1994

L W Gonzales, and P L Ballard, and J Gonzales
Department of Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia 19104.

During late fetal development, synthesis of surfactant phospholipid requires a large supply of fatty acid precursor. Fatty acid synthetase is a regulatory enzyme for de novo fatty acid synthesis in lung as well as other lipogenic tissues. In this study, we report hormonal induction of FAS mRNA in human fetal lung explants (16-23 week gestation) cultured up to 7 days in Waymouth's medium (no serum) supplemented with dexamethasone (Dex, 10 nM) or agents that increase cAMP (8-Br-cAMP, 0.1 mM; isobutylmethylxanthine, 0.1 mM; forskolin, 0.01 mM; PGE1, 0.01 mM). Exposure of explants to Dex or cAMP agents increased FAS mRNA content by 6 h and maximal stimulation occurred at 72 h for Dex (approx. 3-fold increase) and 24 h for cAMP (approx. 2-fold increase). In the presence of both Dex and cAMP there was a synergistic increase in FAS mRNA content at all times (approx. 11-fold increase at 72 h). Induction of FAS mRNA was specific for steroids with glucocorticoid activity, reversible on removal of hormone, and was half-maximal at 2-3 nM Dex consistent with receptor mediation. Actinomycin D blocked induction by Dex but not by cAMP suggesting a transcriptional effect by glucocorticoid but not by cAMP. T3, which increases phosphatidylcholine synthesis, did not induce FAS mRNA. The findings indicate that both glucocorticoid and cAMP increase FAS gene expression consistent with an important role for FAS in regulating the supply of fatty acid for surfactant phospholipid synthesis.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011663 Pulmonary Surfactants Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI. Surfactants, Pulmonary,Pulmonary Surfactant,Surfactant, Pulmonary
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

L W Gonzales, and P L Ballard, and J Gonzales
May 1997, The American journal of physiology,
L W Gonzales, and P L Ballard, and J Gonzales
October 1980, The Journal of biological chemistry,
L W Gonzales, and P L Ballard, and J Gonzales
December 1985, Pediatric research,
L W Gonzales, and P L Ballard, and J Gonzales
August 1993, The American journal of physiology,
L W Gonzales, and P L Ballard, and J Gonzales
April 1995, The American journal of physiology,
L W Gonzales, and P L Ballard, and J Gonzales
July 1978, Journal of endocrinological investigation,
L W Gonzales, and P L Ballard, and J Gonzales
November 1984, European journal of biochemistry,
L W Gonzales, and P L Ballard, and J Gonzales
January 1991, Journal of perinatal medicine,
L W Gonzales, and P L Ballard, and J Gonzales
February 1980, Biochemical and biophysical research communications,
L W Gonzales, and P L Ballard, and J Gonzales
February 1985, Biochemical and biophysical research communications,
Copied contents to your clipboard!