Retrovirus-mediated gene transfer and expression of human ornithine delta-aminotransferase into embryonic fibroblasts. 1994

J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892.

Ornithine delta aminotransferase (OAT) is a nuclear-encoded mitochondrial matrix enzyme that catalyzes the reversible transamination of ornithine to glutamate semialdehyde. In humans, genetic deficiency of OAT results in gyrate atrophy of the choroid and retina, a blinding chorioretinal degeneration usually beginning in late childhood. This disorder has been shown to be autosomal recessive, and is often caused by missense, nonsense, and/or frameshift mutations in the OAT gene. With the view of applying gene therapy, a Moloney murine leukemia virus (MoMLV)-based recombinant retrovirus vector has been constructed. The human OAT cDNA was placed under the control of the enhancer-promoter regulatory elements derived from the MoMLV long terminal repeat (LTR). The construct was transfected into the retroviral packaging cell lines GP + E - 86 and psi CRIP to produce virus particles. Supernatant from these OAT retrovirus producer cell lines were used to transduce mouse C57B1/6 embryonal fibroblasts. We showed that the recombinant retrovirus transfers the OAT gene to the recipient cells, which produce an OAT RNA transcript when analyzed by Northern blot. Western blot analysis and enzymatic assays confirmed the presence of an OAT polypeptide that has a high enzymatic activity in the transduced cell lines, even after a long period of time in vitro.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008979 Moloney murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk. Moloney Leukemia Virus,Leukemia Virus, Moloney,Virus, Moloney Leukemia
D009953 Ornithine-Oxo-Acid Transaminase A pyridoxal phosphate enzyme that catalyzes the formation of glutamate gamma-semialdehyde and an L-amino acid from L-ornithine and a 2-keto-acid. EC 2.6.1.13. Ornithine Aminotransferase,Ornithine Transaminase,L-Ornithine-2-Oxo-Acid Aminotransferase,L-Ornithine-2-Oxoglutarate Aminotransferase,Ornithine Ketoacid Aminotransferase,Ornithine-2-Ketoglutarate Aminotransferase,Ornithine-Keto-Acid-Transaminase,Ornithine-Ketoacid-Transaminase,Pyrroline-5-Carboxylate Synthase,Aminotransferase, L-Ornithine-2-Oxo-Acid,Aminotransferase, L-Ornithine-2-Oxoglutarate,Aminotransferase, Ornithine,Aminotransferase, Ornithine Ketoacid,Aminotransferase, Ornithine-2-Ketoglutarate,Ketoacid Aminotransferase, Ornithine,L Ornithine 2 Oxo Acid Aminotransferase,L Ornithine 2 Oxoglutarate Aminotransferase,Ornithine 2 Ketoglutarate Aminotransferase,Ornithine Keto Acid Transaminase,Ornithine Ketoacid Transaminase,Ornithine Oxo Acid Transaminase,Pyrroline 5 Carboxylate Synthase,Synthase, Pyrroline-5-Carboxylate,Transaminase, Ornithine,Transaminase, Ornithine-Oxo-Acid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle

Related Publications

J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
November 1997, Human gene therapy,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
June 1989, Investigative ophthalmology & visual science,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
January 1995, Gene therapy,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
January 1986, Cold Spring Harbor symposia on quantitative biology,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
March 1998, Journal of molecular medicine (Berlin, Germany),
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
June 1986, Molecular biology & medicine,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
May 1990, The Journal of biological chemistry,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
April 1996, Investigative ophthalmology & visual science,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
November 1993, Human molecular genetics,
J L Rivero, and H D Lacorazza, and A Kozhich, and R B Nussenblatt, and M Jendoubi
April 1989, Molecular biology & medicine,
Copied contents to your clipboard!