A neural-network system for control of eye movements: basic mechanisms. 1994

L L Massone
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.

This paper presents a neural-network-based system that can generate and control movements of the eyes. It was inspired by a number of experimental observations on the saccadic and gaze systems of monkeys and cats. Because of the generality of the approach undertaken, the system can be regarded as a demonstration of how parallel distributed processing principles, namely learning and attractor dynamics, can be integrated with experimental findings, as well as a biologically inspired controller for a dexterous robotic orientation device. The system is composed of three parts: a dynamic motor map, a push-pull circuitry, and a plant. The dynamics of the motor map is generated by a multi-layer network that was trained to compute a bidimensional temporal-spatial transformation. Simulation results indicate (1) that the system is able to reproduce some of the properties observed in the biological system at the neural and movement levels and (2) that the dynamics of the motor map remains stereotyped even when the motor map is subject to abnormal stimulation patterns. The latter result emphasizes the role of the topographic projection that connects the motor map to the push-pull circuitry in determining the features of the resulting movements.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003491 Cybernetics That branch of learning which brings together theories and studies on communication and control in living organisms and machines. Cybernetic
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

L L Massone
April 2002, Annals of the New York Academy of Sciences,
L L Massone
October 1998, Neural networks : the official journal of the International Neural Network Society,
L L Massone
January 1991, The Japanese journal of physiology,
L L Massone
December 1993, Current opinion in neurobiology,
L L Massone
July 1987, Physiological reviews,
L L Massone
January 2007, Developments in ophthalmology,
L L Massone
January 1995, Biomedical sciences instrumentation,
L L Massone
January 2000, Psychological research,
L L Massone
January 1986, Biological cybernetics,
L L Massone
January 1986, Transactions of the ophthalmological societies of the United Kingdom,
Copied contents to your clipboard!