[Change in the level of sphingosine in rat liver nuclei and cells during oncogene superexpression induced by cycloheximide]. 1994

A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova

Changes in the sphingosine content in rat liver cells and nuclei have been studied with reference to the level of nuclear oncogene expression, induced by cycloheximide (0.1, 0.5 and 3.0 mg/kg). It has been found that only the sublethal (3 mg/kg) dose of cycloheximide which induces the superexpression of c-fos and c-myc oncogenes can promote sphingosine accumulation in the cell. At the moment of enhanced expression of nuclear oncogenes, the maximum content of free sphingosine exceeds the control level 1.5- and 3-fold in the cell and in the nuclei, respectively. The difference in the sphingosine accumulation patterns in the cell and in the nuclei testifies to the fact that sphingomyelin metabolism is more active in the nuclei than in the cell. Sphingosine accumulation in the nuclei is characterized by coordination of sphingomyelinase activity and changes in the sphingomyelin content. A comparative analysis of activities of enzymes of sphingomyelin (sphingomyelinase) and phosphatidyl inositol (phosphatidyl inositol kinase) cycles indicates that in the nuclei the activation of the sphingomyelin cycle forestalls the cycloheximide-induced activation of the phosphatidyl inositol cycle and the maximal accumulation of nuclear oncogene mRNAs. A model of activation of oncogene expression with participation of sphingosine inhibiting protein kinase C and activating casein kinase II, the key enzymes of the signal transduction system of cell proliferation and differentiation, is proposed.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013108 Sphingomyelin Phosphodiesterase An enzyme that catalyzes the hydrolysis of sphingomyelin to ceramide (N-acylsphingosine) plus choline phosphate. A defect in this enzyme leads to NIEMANN-PICK DISEASE. EC 3.1.4.12. Sphingomyelin Cholinephosphohydrolase,Sphingomyelin Cleaving Enzyme,Sphingomyelinase,Sphingomyelinase C
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin
D013110 Sphingosine An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed) 4-Sphingenine,4 Sphingenine

Related Publications

A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
March 1993, Biokhimiia (Moscow, Russia),
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
May 1991, Biokhimiia (Moscow, Russia),
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
August 1975, Doklady Akademii nauk SSSR,
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
February 1980, Biulleten' eksperimental'noi biologii i meditsiny,
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
August 1999, European journal of cell biology,
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
May 1993, Biokhimiia (Moscow, Russia),
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
October 1997, FEBS letters,
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
January 1995, Cellular & molecular biology research,
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
October 1994, Liver,
A V Alesenko, and P Ia Boĭkov, and L B Drobot, and S A Rusakov, and G N Filippova
March 1992, Journal of biochemistry,
Copied contents to your clipboard!