A novel micropipet method for measuring the bending modulus of vesicle membranes. 1994

D V Zhelev, and D Needham, and R M Hochmuth
Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300.

A theoretical model and an experiment are presented for determining the bending modulus of a bilayer vesicle membrane. The vesicle is held with a pipet having a radius between 1 and 2 microns, and the tension in the membrane is changed by changing the suction pressure. Then the vesicle membrane is deformed by aspirating it into a smaller pipet having a radius on the order of 0.5 microns. The relationship between the suction pressures in the two pipets is found to be linear, as predicted by the theoretical model. The curvature of the vesicle membrane at the pipet orifice and the bending modulus are found with the help of the model from the slope and the intercept of the linear experimental relationship between the suction pressures in the two pipets. The bending modulus for the two SOPC membranes studied in these experiments was found to be either 0.6 or 1.15 x 10(-19) J, which is similar to the values measured previously.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D004548 Elasticity Resistance and recovery from distortion of shape.
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D005898 Glass Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.

Related Publications

D V Zhelev, and D Needham, and R M Hochmuth
November 2006, The Journal of chemical physics,
D V Zhelev, and D Needham, and R M Hochmuth
June 2022, The European physical journal. E, Soft matter,
D V Zhelev, and D Needham, and R M Hochmuth
October 2021, Physical review. E,
D V Zhelev, and D Needham, and R M Hochmuth
May 2022, Journal of chemical theory and computation,
D V Zhelev, and D Needham, and R M Hochmuth
September 2013, Journal of chemical theory and computation,
D V Zhelev, and D Needham, and R M Hochmuth
July 2015, ACS applied materials & interfaces,
D V Zhelev, and D Needham, and R M Hochmuth
July 2020, The journal of physical chemistry. B,
D V Zhelev, and D Needham, and R M Hochmuth
June 2014, Advances in colloid and interface science,
Copied contents to your clipboard!