Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle. 1994

M Sukhareva, and J Morrissette, and R Coronado
Department of Physiology, University of Wisconsin School of Medicine, Madison 53706.

We investigated the effect of Cl- on the Ca2+ permeability of rabbit skeletal muscle junctional sarcoplasmic reticulum (SR) using 45Ca2+ fluxes and single channel recordings. In 45Ca2+ efflux experiments, the lumen of the SR was passively loaded with solutions of 150 mM univalent salt containing 5 mM 45Ca2+. Release of 45Ca2+ was measured by rapid filtration in the presence of extravesicular 0.4-0.8 microM free Ca2+ and 150 mM of the same univalent salt loaded into the SR lumen. The rate of release was 5-10 times higher when the univalent salt equilibrated across the SR-contained Cl- (Tris-Cl, choline-Cl, KCl) instead of an organic anion or other halides (gluconate-, methanesulfonate-, acetate-, HEPES-, Br-, I-). Cations (K+, Tris+) could be interchanged without a significant effect on the release rate. To determine whether Cl- stimulated ryanodine receptors, we measured the stimulation of release by ATP (5 mM total) and caffeine (20 mM total) and the inhibition by Mg2+ (0.8 mM estimated free) in Cl(-)-free and Cl(-)-containing solutions. The effects of ATP, caffeine, and Mg2+ were the largest in K-gluconate and Tris-gluconate, intermediate in KCl, and notably poor or absent in choline-Cl and Tris-Cl. Procaine (10 mM) inhibited the caffeine-stimulated release measured in K-gluconate, whereas the Cl- channel blocker clofibric acid (10 mM) but not procaine inhibited the caffeine-insensitive release measured in choline-Cl. Ruthenium red (20 microM) inhibited release in all solutions. In SR fused to planar bilayers we identified a nonselective Cl- channel (PCl: PTris: PCa = 1:0.5:0.3) blocked by ruthenium red and clofibric acid but not by procaine. These conductive and pharmacological properties suggested the channel was likely to mediate Cl(-)-dependent SR Ca2+ release. The absence of a contribution of ryanodine receptors to the Cl(-)-dependent release were indicated by the lack of an effect of Cl- on the open probability of this channel, a complete block by procaine, and a stimulation rather than inhibition by clofibric acid. A plug model of Cl(-)-dependent release, whereby Cl- removed the inhibition of the nonselective channel by large anions, was formulated under the assumption that nonselective channels and ryanodine receptor channels operated separately from each other in the terminal cisternae. The remarkably large contribution of Cl- to the SR Ca2+ permeability suggested that nonselective Cl- channels may control the Ca2+ permeability of the SR in the resting muscle cell.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011343 Procaine A local anesthetic of the ester type that has a slow onset and a short duration of action. It is mainly used for infiltration anesthesia, peripheral nerve block, and spinal block. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1016). Anuject,Geriocaine,Gerokit,Hewedolor-Procain,Lophakomp-Procain N,Novocain,Novocaine,Procain Braun,Procain Jenapharm,Procain Rödler,Procain Steigerwald,Procain curasan,Procaina Serra,Procaine Hydrochloride,Pröcaine chlorhydrate Lavoisier,Röwo Procain,procain-loges,Hydrochloride, Procaine
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

M Sukhareva, and J Morrissette, and R Coronado
September 1993, FEBS letters,
M Sukhareva, and J Morrissette, and R Coronado
November 1996, FEBS letters,
M Sukhareva, and J Morrissette, and R Coronado
July 1995, The Journal of membrane biology,
M Sukhareva, and J Morrissette, and R Coronado
October 1984, Physiological reviews,
M Sukhareva, and J Morrissette, and R Coronado
April 1998, Pflugers Archiv : European journal of physiology,
M Sukhareva, and J Morrissette, and R Coronado
February 1993, Pflugers Archiv : European journal of physiology,
M Sukhareva, and J Morrissette, and R Coronado
May 2003, European journal of pharmacology,
M Sukhareva, and J Morrissette, and R Coronado
August 2014, Journal of enzyme inhibition and medicinal chemistry,
M Sukhareva, and J Morrissette, and R Coronado
December 2002, Proceedings of the National Academy of Sciences of the United States of America,
M Sukhareva, and J Morrissette, and R Coronado
January 1991, Biomedical science,
Copied contents to your clipboard!