Transient electric birefringence of agarose gels. II. Reversing electric fields and comparison with other polymer gels. 1994

J Stellwagen, and N C Stellwagen
Department of Biochemistry, University of Iowa, Iowa City 52242.

The transient electric birefringence of low electroendosmosis (LE) agarose gels oriented by pulsed unidirectional electric fields was described in detail in Part I [J. Stellwagen and N. C. Stellwagen (1994), Biopolymers, Vol. 34, p. 187]. Here, the birefringence of LE agarose gels in rapidly reversing electric fields, similar in amplitude and duration to those used for field inversion gel electrophoresis, is reported. Symmetric reversing electric fields cause the sign of the birefringence of LE agarose gels, and hence the direction of orientation of the agarose fibers, to oscillate in phase with the applied electric field. Because of long-lasting memory effects, the alternating sign of the birefringence appears to be due to metastable changes in gel structure induced by the electric field. If the reversing field pulses are equal in amplitude but different in duration, the orientation behavior depends critically on the applied voltage. If E < 7 V/cm, the amplitude of the birefringence gradually decreases with increasing pulse number and becomes unmeasurably small. However, if E > 7 V/cm, the amplitude of the birefringence increases more than 10-fold after approximately 20 pulses have been applied to the gel, suggesting that a cooperative change in gel structure has occurred. Because there is no concomitant change in the relaxation times of the orienting particles, the large increase in the amplitude of the birefringence must be due to an increase in the number of agarose fibers and/or fiber bundles orienting in the electric field, which in turn indicates a cooperative breakdown of the noncovalent "junction zones" that cross-link the fibers into the gel matrix. The sign of the birefringence of LE agarose gels is always positive after extensive junction zone breakdown, indicating that the agarose fibers and fiber bundles preferentially orient parallel to the electric field when they are freed from the constraints of the gel matrix. Three other gel-forming polymers, high electroendosmosis (HEEO) agarose (a more highly charged agarose), beta-carrageenan (a stereoisomer of agarose), and polyacrylamide (a chemically cross-linked polymer) were also studied in unidirectional and rapidly reversing electric fields. The birefringence of HEEO agarose gels in reversing fields is very similar to that of LE agarose gels, suggesting that the orientation anomalies are not due to the occasional charged residues on the agarose backbone chain. The beta-carrageenan gels exhibit variable orientation behavior in reversing electric fields, suggesting that its internal gel structure is not as tightly interconnected as that of agarose gels.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D001718 Birefringence The property of nonisotropic media, such as crystals, whereby a single incident beam of light traverses the medium as two beams, each plane-polarized, the planes being at right angles to each other. (Cline et al., Dictionary of Visual Science, 4th ed) Birefraction,Double Refraction,Birefractions,Birefringences,Double Refractions,Refraction, Double,Refractions, Double
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D004574 Electromagnetic Fields Fields representing the joint interplay of electric and magnetic forces. Electromagnetic Field,Field, Electromagnetic,Fields, Electromagnetic
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D012685 Sepharose Agarose,Sepharose 4B,Sepharose C1 4B,4B, Sepharose C1,C1 4B, Sepharose
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

J Stellwagen, and N C Stellwagen
December 1988, Biopolymers,
J Stellwagen, and N C Stellwagen
January 1990, Biopolymers,
J Stellwagen, and N C Stellwagen
January 1996, Biophysical chemistry,
J Stellwagen, and N C Stellwagen
February 1978, The Review of scientific instruments,
J Stellwagen, and N C Stellwagen
January 1992, Applied and theoretical electrophoresis : the official journal of the International Electrophoresis Society,
J Stellwagen, and N C Stellwagen
August 1991, Biopolymers,
J Stellwagen, and N C Stellwagen
March 1992, Physical review letters,
Copied contents to your clipboard!