Differentiation primary response genes and proto-oncogenes as positive and negative regulators of terminal hematopoietic cell differentiation. 1994

D A Liebermann, and B Hoffman
Fels Institute for Cancer Research and Molecular Biology, Temple University, School of Medicine, Philadelphia, Pennsylvania 19140.

By genetically manipulating hematopoietic cells of the myeloid lineage, including both normal cells and differentiation inducible leukemic cell lines, evidence was obtained to indicate that myeloid differentiation primary response (MyD) genes and proto-oncogenes, which are known to control cell growth, function as positive and negative regulators of terminal hematopoietic cell differentiation, which is associated with inhibition of cell growth, and, ultimately programmed cell death (apoptosis). Interferon regulatory factor-1 (IRF-1), an MyD gene induced by Interleukin 6 (IL-6) or Leukemia Inhibitory factor (LIF), plays a role in growth inhibition associated with terminal differentiation. Leucine zipper transcription factors of the fos/jun family, also identified as MyD genes, function as positive regulators of hematopoietic cell differentiation, increasing the propensity of myeloblastic leukemia cells to be induced for differentiation in vitro, and reducing the aggressiveness of their leukemic phenotype in vivo. The zinc finger transcription factor EGR-1, an MyD gene specifically induced upon macrophage differentiation, was shown to be essential for and to restrict differentiation along the macrophage lineage. Finally, evidence has been accumulating to indicate that the novel MyD genes--MyD116, MyD118 and gadd45 (a member in the MyD118 gene family)--play a role in growth arrest and apoptosis of hematopoietic cells, as well as other cell types. The proto-oncogenes c-myc and c-myb, known to regulate cellular growth, were shown to function as negative regulators of terminal differentiation. Both c-myc and c-myb are normally expressed in proliferating myeloblasts and suppressed following induction of differentiation. Deregulated and continuous expression of c-myc was shown to block terminal myeloid differentiation at an intermediate stage in the progression from immature blasts to mature macrophages, whereas deregulated and continuous expression of c-myb blocked the terminal differentiation program at the immature myeloblast stage. By manipulating myc function in conditional (differentiation inducible) mutant myeloblastic leukemia cell lines, expressing a chimeric mycer transgene, it was shown that there is a window during myeloid differentiation, after the addition of the differentiation inducer, when the terminal differentiation program switches from being dependent on c-myc suppression to becoming c-myc suppression independent, and where activation of c-myc has no apparent effect on mature macrophages. These myeloblastic leukemia cell lines provide a powerful tool to increase our understanding of the role of c-myc in normal hematopoiesis and in leukemogenesis, while also providing a strategy to clone myc target genes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010750 Phosphoproteins Phosphoprotein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

D A Liebermann, and B Hoffman
January 1990, BioEssays : news and reviews in molecular, cellular and developmental biology,
D A Liebermann, and B Hoffman
January 1992, American journal of reproductive immunology (New York, N.Y. : 1989),
D A Liebermann, and B Hoffman
October 2008, European journal of pharmacology,
D A Liebermann, and B Hoffman
November 1987, Experimental cell research,
D A Liebermann, and B Hoffman
December 1995, The International journal of developmental biology,
D A Liebermann, and B Hoffman
January 1986, Journal of cellular physiology. Supplement,
D A Liebermann, and B Hoffman
August 1983, Hospital practice (Office ed.),
D A Liebermann, and B Hoffman
March 1986, Biochemical and biophysical research communications,
Copied contents to your clipboard!